(2x+3)(2x-3)
a. ( 5 - 2x ) ( 5x + 2x ) + 2x ( x + 3 ) = 4 - 2x² b. ( 3x - 2 )( -2x) + 5x² = -x( x - 3) c. 7 - ( 3 + 2x ) (2x - 3 ) = ( x + 4 )²
a: Sửa đề: (5-2x)(5+2x)+2x(x+3)=4-2x^2
=>25-4x^2+2x^2+6x=4-2x^2
=>6x+25=4
=>6x=-21
=>x=-7/2
b: (3x-2)(-2x)+5x^2=-x(x-3)
=>-6x^2+4x+5x^2=-x^2+3x
=>4x=3x
=>x=0
c: =>7-(4x^2-9)=x^2+8x+16
=>7-4x^2+9-x^2-8x-16=0
=>-5x^2-8x=0
=>5x^2+8x=0
=>x(5x+8)=0
=>x=0 hoặc x=-8/5
(2x+3)^2+(2x+3)^2-2(2x-3)(2x-3)
\(=4x^2+12x+9+4x^2+12x+9-8x^2-18=24x\)
Tính (rút gọn )
1, 2x(3x-1)-(2x+1)(x-3)
2, 3(x^2-2x)-(4x+2)(x-1)
3, 3x(x-5)-(x-2)^2 -(2x+3)(2x-3)
4, (2x-3)^2+(2x-1) (x+4)
1) `2x(3x-1)-(2x+1)(x-3)`
`=6x^2-2x-2x^2+6x-x+3`
`=4x^2+3x+3`
2) `3(x^2-3x)-(4x+2)(x-1)`
`=3x^2-9x-4x^2+4x-2x+2`
`=-x^2-7x+2`
3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`
`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`
`=3x^2-15x-x^2+4x-4-4x^2+9`
`=-2x^2-11x+5`
4) `(2x-3)^2+(2x-1)(x+4)`
`=4x^2-12x+9+2x^2+8x-x-4`
`=6x^2-5x+5`
Bài I. Rút gọn các biểu thức sau:
a) 3x(2x+1)+ (2x - 3)(x+1),
b) x(3x - 2)2 + 3(x-2)(x+2)
c) (2x+1)(4x² - 2x+1)-2x(2x+3)(2x - 3)-(x-3)²
a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)
\(=6x^2+3x+2x^2+2x-3x-3\)
\(=8x^2+2x-3\)
tính (2x+3)^2 + (2x-3)^2 - 2(2x+3)(2x-3)
\(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(2x+3\right)\left(2x-3\right)\)
\(=\left(2x+3-2x+3\right)^2\)
\(=9^2\)
\(=81\)
\(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(2x+3\right)\left(2x-3\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2\)
\(=\left(2x+3-2x+3\right)^2\)
\(=6^2=36\)
Rút gọn:
c) (2x + 3)2 + (2x - 3)2 - (2x + 3) (2x - 3)
d) (x - 1) (x2 + x + 1) - (2x + 3) (4x2 - 6x + 9)
e) (x + 1)3 - (x - 1)3 - 6x2
c: \(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=4x^2+12x+9+4x^2-12x+9-\left(4x^2-9\right)\)
\(=8x^2+18-4x^2+9=4x^2+27\)
d: \(\left(x-1\right)\cdot\left(x^2+x+1\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(=\left(x-1\right)\left(x^2+x\cdot1+1^2\right)-\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)
\(=x^3-1-8x^3-27=-7x^3-28\)
e: \(\left(x+1\right)^3-\left(x-1\right)^3-6x^2\)
\(=x^3+3x^2+3x+1-6x^2-\left(x^3-3x^2+3x-1\right)\)
\(=x^3-3x^2+3x+1-x^3+3x^2-3x+1\)
=2
\(|2x+6|-x=3
\)
TH1 \(|2x+6|=2x+6
khi
2x+6>=0hayx< =-3\)
ta có dạng pt
2x+6-x=3
<=>x+6=3
<=>x=-3TM
TH2\(|2x+6|=-2x-6
khi
2x+6< 0hay
x>-3\)
ta có dạng pt
-2x-6-x=3
<=>-3x-6=3
<=>-3x=9
<=>x=-3TM
mọi người xem hộ em đúng không ạ
ngược dấu hai chỗ điều kiện rồi bạn
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
root(2x + 2, 3) + root(2x + 1, 3) = root(2x ^ 2, 3) + root(2x ^ 2 + 1, 3)
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)