Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐINH NHẬT BẢO NHI
Xem chi tiết
Lê Nguyễn Minh Ngọc
Xem chi tiết
Song Tử
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Võ Đông Anh Tuấn
15 tháng 11 2016 lúc 11:38

Phân tích mẫu thức thành nhân tử :

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)

\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)

Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)

Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)

Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)

Phương An
15 tháng 11 2016 lúc 11:25

Tử:

(b - c)3 + (c - a)3 + (a - b)3

= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)

= 0 - 3(b - a)(a - c)(c - b)

= 3(a - b)(a - c)(c - b)

Mẫu:

a2(b - c) + b2(c - a) + c2(a - b)

= a2(b - c) + b2c - ab2 + ac2 - bc2

= a2(b - c) - a(b2 - c2) + bc(b - c)

= a2(b - c) - a(b - c)(b + c) + bc(b - c)

= (b - c)(a2 - ab - ac + bc)

= (b - c)[a(a - b) - c(a - b)]

= (b - c)(a - b)(a - c)

\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)

\(=\frac{3\left(c-b\right)}{b-c}\)

Xem chi tiết
Moon
3 tháng 11 2018 lúc 11:24

em ms hok lớp 1

ST
3 tháng 11 2018 lúc 11:26

Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)

\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)

Đặt b - c = x, c - a = y, a - b = z

=> x + y + z = b - c + c - a + a - b = 0

Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)

=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)

Cô nàng Thiên Yết
Xem chi tiết
Hoàng Bá Quyền
9 tháng 2 2020 lúc 19:17

a, Gợi ý nà :3

a^2 + b^2 - c^2 +2ab = (a^2 + b^2 + 2ab) -c^2 = (a+b)^2 - c^2 = (a + b - c)(a + b + c)

a^2 - b^2 + c^2 + 2ac = (a + c)^2 - b^2 = (a + b + c)(a - b + c)

b. Gợi ý tiếp luôn nà :3

a^3 + b^3 + c^3 - 3abc

= (a^3 + b^3 +3a^2 x b + 3ab^2) - 3ab(a+b) -3abc + c^3

= (a+b)^3 + c^3 - 3ab(a+b+c) 

= (a + b+ c)[(a+b)^2 - c(a+b) +c^2] - 3ab(a+b+c)

=(a+b+c)(a^2 + b^2 + c^2 -ac -bc + 2ab -3ab)

=(a+b+c)(a^2 + b^2 + c^2 - ab - bc -ca)

Rồi cứ thế rút gọn...

Học tốt nha bạn :3

Khách vãng lai đã xóa
shitbo
9 tháng 2 2020 lúc 19:20

\(\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b+c\right)}=\frac{a+b-c}{a-b+c}\)

\(\text{nhận xét: ta có hằng đẳng thức:}\)

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

đó đến đây bạn làm tiếp

Khách vãng lai đã xóa
Lê Hồ Trọng Tín
9 tháng 2 2020 lúc 19:21

b/\((\sum a^3)-3abc=(\sum a).(\sum a^2-\sum ab)\)\(\Rightarrow\)\(\frac{(\sum a^3)-3abc}{(\sum a^2-\sum ab)}=\frac {(\sum a).(\sum a^2-\sum ab)}{(\sum a^2-\sum ab)}=a+b+c\)

Khách vãng lai đã xóa
Trần Khánh Linh
Xem chi tiết
ILoveMath
13 tháng 7 2021 lúc 9:15

a) (a+b)3+(a-b)3=a3+3a2b+3ab2+b3+a3-3a2b+3ab2-b3

                          =2a3+6ab2

b) (c)2 + (a − b − c)2 + (b − c − a)2 + (c − a − b)2

=a2+b2+c2+2ab+2bc+2ca+a2+b2+c2-2ab+2bc-2ac+a2+b2+c2-2bc+2ca-2ba+a2+b2+c2-2ca+2ab-2cb

=4a2+4b2+4c2

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:50

a) Ta có: \(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2a\cdot\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)

\(=2a\cdot\left(a^2+3b^2\right)\)

\(=2a^3+6ab^2\)

Nguyễn Trung Dũng
Xem chi tiết
Bùi Anh Tuấn
25 tháng 11 2019 lúc 19:40

\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

Khách vãng lai đã xóa
ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 22:18

a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

=a+b+c

b: 

Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{x-y+z}{2}\)

Nguyễn Đức Trí
15 tháng 9 2023 lúc 22:24

a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)