Chứng minh rằng:
a) a13a9 chia hết cho 11
b) (2a)(2b)(2c)abc chia hết cho 3, cho 23, cho 29
Cmr
a) ) a13a9 chia hết cho
b) (2a)(2b)(2c) abc chia hết cho 3,cho23 ,cho29
Chứng tỏ rằng mọi số tự nhiên M = (2a)(2b)(2c)abc đều chia hết cho 3 , cho 23 và cho 29
2a = 24; 2b = 25 ; 2c = 26
4+5+6=15 chia hết cho 3.
M = (2a)(2b)(2c)abc = 2a . 100 000 + 2b . 10 000 + 2c . 1000 + abc
= 2000(100a + 10b + c) + abc = 2000 . abc + abc = 2001 . abc
= 3 . 23 . 29 . abc
Suy ra M \(⋮\)3 , M \(⋮\) 23 và M \(⋮\)29.
Cho A = 2 + 22 + 23 ...+ 220 . Chứng minh rằng:
a) A chia hết cho 2
b) A chia hết cho 3
c) A chia hết cho 5
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự
Chứng tỏ : Số tự nhiên (2a)(2b)(2c)abc chia hết cho 3;23 và 29
Cho A = 2 + 22 + 23 ...+ 220 . Chứng minh rằng:
a) A chia hết cho 2
b) A chia hết cho 3
c) A chia hết cho 5
Em đang rất gấp ạ
a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)
c) tham khảo:
M = 2 + 22 + 23 + ... + 220
= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
= 2 . ( 1 + 2 + 22 + 23 ) + 25 . ( 1 + 2 + 22 + 23 ) + ... + 217 . ( 1 + 2 + 22 + 23 )
= 2 . 15 + 25 . 15 + ... + 217 .15
= 15 . 2 ( 1 + 24 + ... + 216 )
= 3 . 5 . 2 ( 1 + 24 + ... + 216 ) \(⋮\) 5
Lời giải:
a.
$A=2(1+2^1+2^2+...+2^{19})\vdots 2$
b.
$A=(2+2^2)+(2^3+2^4)+.....+(2^{19}+2^{20})$
$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$
$=2.3+2^3.3+...+2^{19}.3$
$=3(2+2^3+...+2^{19})\vdots 3$
c.
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$
$=2.15+2^5.15+....2^{17}.15$
$=15(2+2^5+...+2^{17})$
$=5.3.(2+2^5+...+2^{17})\vdots 5$
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có : 83a + 38b chia hết cho 17
Suy ra : 17a +83a + 38b + 17b chia hết cho 17
Suy ra 100a +55b chia hết cho 17
Suy ra 5×(20a +11b ) chia hết cho 17
Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17)
Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17
CMR:
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
a) Do 20a + 11b chia hết cho 17 => 5.(20a + 11b)
=> 100a+55b chia hết cho 17
=>(83a + 38b) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.(20a+11b) chia hết cho 17 (như trên) (3)
Từ (1), (2), (3) => 83a + 38b chia hết cho 17. (tính chất chia hết của một tổng)
b) Do 2a + 3b + 4c chia hết cho 7 => 10.(2a + 3b + 4c) chia hết cho 7
=> 20a + 30b + 40c chia hết cho 7
=> (13a + 2b - 3c) + 7a + 28b + 7c chia hết cho 7
Mà 7a chia hết cho 7 với mọi a thuộc N
28b chia hết cho 7 với mọi b thuộc N
7c chia hết cho 7 với mọi c thuộc N
=> 13a + 2b -3c chia hết cho 7
Vậy...
Chứng minh rằng nếu (7a + 11b )chia hết cho 3 thì (2a+b)chia hết cho 3
A=7a+11b
B= 2a+b
2A -7B =14a +22b - 14a - 7b = 15 chia hết cho 3
+ Nếu A chia hết cho 3 => 2A chia hết cho 3 =>. 7B chia hết cho 3 => B chia hết cho 3
Vậy A chia hết cho 3 thì B chia hết cho 3
chứng minh rằng nếu(7a + 11b) chia hết cho 3 thì (2a+b) chia hết cho 3