rut gon bieu thucA=\(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)+1\)1
rut gon bieu thuc
\(Q=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(P=12\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
Rut gon cac bieu thuc sau
b,P=\(\left(3x+1\right)^2-2\left(1+3x\right)\left(3x+5\right)+\left(3x+5\right)^2\)
T=(3+1)\(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(P=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)
---
\(T=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Rightarrow2T=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(2T=\left(3^8-1\right)\left(3^8+1\right)=3^{16}-1\)
\(\Rightarrow T=\dfrac{3^{16}-1}{2}=21523360\)
1> Rut gon
a)\(\sqrt{6-2\sqrt{2}+2\sqrt{3}-2\sqrt{6}}\)
b) \(\left(\sqrt{2}+1\right)\left(\left(\sqrt{2}\right)^2+1\right)\left(\left(\sqrt{2}\right)^4+1\right)\left(\left(\sqrt{2}\right)^8+1\right)\left(\left(\sqrt{2}\right)^{16}+1\right)\)
c)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
d) \(\sqrt{3-\frac{4\sqrt{5}}{3}}+\sqrt{3+\frac{4\sqrt{5}}{3}}\)
Rút gọn biểu thức :
\(\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Lời giải :
\(\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\cdot\left(3+1\right)\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\frac{3^{64}-1}{4}\)
rút gọn biểu thức
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
[Toán 8] Rút gọn $ (3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Tính biểu thức sau một cách Hợp lý :
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Áp dụng HĐT đáng nhớ :
\(\left(a-b\right)\left(a+b\right)=a^2-b^2\) . Ta có :
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)
Chúc bạn học tốt !!!
Tính nhanh \(4\cdot\left(3^2+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
1)rut gon
a)(-48)3:163
b)\(\left(\frac{9}{10}\right)^6:\left(\frac{17}{-20}\right)^6\)
c)\(\left(\frac{-13}{8}\right)^3:\left(\frac{-32}{13}\right)^4\)
1)
a) \(\left(-48\right)^3:16^3\)
\(=\left(-48:16\right)^3\)
\(=\left(-3\right)^3\)
\(=-27.\)
b) \(\left(\frac{9}{10}\right)^6:\left(\frac{17}{-20}\right)^6\)
\(=\left(\frac{9}{10}:\frac{17}{-20}\right)^6\)
\(=\left(-\frac{18}{17}\right)^6\)
Chúc em học tốt!
\(\frac{-13^3}{\left(2^3\right)^3}:\frac{\left(-2^5\right)^4}{13^4}\)1.
a, (-48)3:163
= \(\left(\frac{-48}{16}\right)^3\)
= (-3)3
b,\(\left(\frac{9}{10}\right)^6\):\(\left(\frac{17}{-20}\right)^6\)
= \(\left(\frac{9}{10}:\frac{17}{-20}\right)^6\)
=\(\left(\frac{-18}{17}\right)^6\)
c, \(\left(\frac{-13}{8}\right)^3:\left(\frac{-32}{13}\right)^4\)
= \(\frac{-13^3}{\left(2^3\right)^3}:\frac{\left(-2^5\right)^4}{13^4}\)
= \(\frac{-13^3}{2^9}.\frac{-13^4}{2^{20}}\)
=\(\frac{13^7}{2^{29}}\)
BT7: Tính
\(1,A=8\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)
\(2,B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)
1: A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)
=(3^8-1)(3^8+1)(3^16+1)
=(3^16-1)(3^16+1)
=3^32-1
2: B=(1-3^2)(1+3^2)*...*(1+3^16)
=(1-3^4)(1+3^4)(1+3^8)(1+3^16)
=1-3^32
1
\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)\\ =3^{32}-1\)
\(B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^2\right)\left(1+3^2\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^4\right)\left(1+3^4\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^8\right)\left(1+3^8\right)\left(3^{16}+1\right)\\ =\left(1-3^{16}\right)\left(1+3^{16}\right)=1-3^{32}\)