Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chanh Hà Thị
Xem chi tiết
Thắng Nguyễn
21 tháng 1 2018 lúc 19:54

Áp dụng BĐT AM-GM ta có:

\(\frac{2}{3}a^2+\frac{3}{2}b^2\ge2ab\)

\(\frac{b^2}{2}+2c^2\ge2bc\)

\(3c^2+\frac{a^2}{3}\ge2ac\)

\(\Rightarrow2A\le a^2+2b^2+5c^2=22\Rightarrow A\le11\)

\("="\Leftrightarrow a=3;b=2;c=1\)

Hà Văn Chiến
Xem chi tiết
Akai Haruma
20 tháng 1 2018 lúc 11:13

Lời giải:
Bài này bạn chỉ cần ứng dụng phương pháp chọn điểm rơi trong BĐT AM_GM là ổn.

Thật vậy. Áp dụng BĐT AM-GM ta có:

\(\frac{a^2}{3}+3c^2\geq 2\sqrt{a^2c^2}=2|ac|\geq 2ac\)

\(\frac{2a^2}{3}+\frac{3b^2}{2}\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab\)

\(\frac{b^2}{2}+2c^2\geq 2\sqrt{b^2c^2}=2|bc|\geq 2bc\)

Cộng theo vế các BĐT trên:

\(\Rightarrow a^2+2b^2+5c^2\geq 2(ab+bc+ac)\)

\(\Leftrightarrow 22\geq 2(ab+bc+ac)\Leftrightarrow ab+bc+ac\leq 11\)

Vậy \(A_{\max}=11\)

Dấu bằng xảy ra khi \((a,b,c)=(3,2,1)\)

Stephen Curry
Xem chi tiết
trần minh khôi
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
dia fic
Xem chi tiết
Vũ Thu An
Xem chi tiết
Đinh Đức Hùng
31 tháng 10 2017 lúc 12:34

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)

\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{\left(1+1+2\right)^2}{a+b+c}=3-16=-13\)có GTNN là - 13

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{4};c=\frac{1}{2}\)

Hoàng hôn  ( Cool Team )
24 tháng 9 2019 lúc 21:42

A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}A=aa−1​+bb−1​+cc−4​=1−a1​+1−b1​+1−c4​

=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{\left(1+1+2\right)^2}{a+b+c}=3-16=-13=3−(a1​+b1​+c4​)≤3−a+b+c(1+1+2)2​=3−16=−13có GTNN là - 13

Dấu "=" xảy ra \Leftrightarrow a=b=\frac{1}{4};c=\frac{1}{2}⇔a=b=41​;c=21​
 

Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Khách vãng lai đã xóa
Cô Gái Mùa Đông
Xem chi tiết
Edogawa Conan
16 tháng 10 2020 lúc 13:25

Do a,b > 0 => \(1-\frac{1}{a}\) và \(1-\frac{1}{b}\)luôn dương

Áp dụng bđt : \(xy\le\frac{\left(x+y\right)^2}{4}\) <=> \(\left(x+y\right)^2\ge4xy\) <=> \(\left(x-y\right)^2\ge0\) (luôn đúng)

P = \(\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\le\frac{1}{4}\left(1-\frac{1}{a}+1-\frac{1}{b}\right)^2=\frac{1}{4}\left[2-\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2\)

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (a,b > 0) (1)

CM bđt đúng: Từ (1) <=> \(\left(\frac{x+y}{xy}\right)\left(x+y\right)\ge4\)

<=> \(\left(x+y\right)^2\ge4xy\) <=> \(\left(x-y\right)^2\ge0\) (luôn đúng)

Khi đó: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{4}=1\)

=> \(2-\left(\frac{1}{a}+\frac{1}{b}\right)\le2-1=1\) => \(\frac{1}{4}\left[2-\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2\le\frac{1}{4}.1^2=\frac{1}{4}\)

Dấu "=" xảy ra <=> a = b = 2

Vậy MaxP = 1/4 khi a =b = 2

Khách vãng lai đã xóa