Lời giải:
Bài này bạn chỉ cần ứng dụng phương pháp chọn điểm rơi trong BĐT AM_GM là ổn.
Thật vậy. Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{3}+3c^2\geq 2\sqrt{a^2c^2}=2|ac|\geq 2ac\)
\(\frac{2a^2}{3}+\frac{3b^2}{2}\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab\)
\(\frac{b^2}{2}+2c^2\geq 2\sqrt{b^2c^2}=2|bc|\geq 2bc\)
Cộng theo vế các BĐT trên:
\(\Rightarrow a^2+2b^2+5c^2\geq 2(ab+bc+ac)\)
\(\Leftrightarrow 22\geq 2(ab+bc+ac)\Leftrightarrow ab+bc+ac\leq 11\)
Vậy \(A_{\max}=11\)
Dấu bằng xảy ra khi \((a,b,c)=(3,2,1)\)