Cho tam giác ABC có độ dài cạnh BC=a , AC=b , AB=c và có diện tích S . Nếu tăng cạnh BC lên 3 lần và giảm cạnh AB đi 2 lần , đồng thời giữ nguyên góc B thì khi đó diện tích diện tích tam giác mới được tạo thành bằng
Cho tam giác ABC,AB=8,AC=9,BC=10.
a.Không giải tam giác,hãy cho biết tam giác ABC là tam giác gì?
b.Lấy M trên cạnh BC có BM=7.Tính diện tích tam giác ABM
Trong mặt phẳng toạ độ 0xy , cho tam giác ABC cân tại A có A(2;1) , B(-3;6) . Trên cạnh AB lấy điểm D và E sao cho AD=CE . Gọi I (5;-2) là trung điểm của DE , K là giao điểm của AI và BC . Viết phương trình đường thẳng BC
Cho tam giác ABC có AB =2, BC =4, AC = 3. Gọi M là trung điểm BC, H là hình chiếu vuông góc của A trên BC. Xác định độ dài AM, AH và cosA
Trong mặt phẳng toạ độ Oxy cho tam giác ABC có A(1;1) , B(2;-1) , C(3;3) . Toạ độ điểm E để tứ giác ABCE là hình bình hành là
Cho tam giác ABC có trực tâm \(H\left(0;\frac{23}{3}\right)\) và phương trình đường thẳng AB: 3x-y-1=0, phương trình cạnh AC: 3x+4y-96=0. Viết phương trình cạnh BC
Trong mặt phẳng Oxy cho 3 điểm A(2;4) , B(1;2) , C(6;2) . Tam giác ABC là tam giác gì .
Bài 2: Cho tam giác ABC có A(1; -5), B(-2; 1), C(2; 3). Hãy lập phương trình tổng quát của :
a) Các cạnh của tam giác ABC.
b) Đường cao AH.
c) Đường trung tuyến BM.
d) Đường trung trực cạnh BC.
Cho tam giác ABC, độ dài 3 cạnh tam giác lần lượt là a,b,c. Gọi G là trọng tâm và R là bán kính đường tròn ngoại tiếp.
a. \(GA^2+GB^2+GC^2=\dfrac{a^2+b^2+c^2}{3}\)
b. \(cotA+cotB+cotC=\dfrac{a^2+b^2+c^2}{4S}\)