Giải hệ phương trình:
\(x^2+y^2+xy=7\)
\(x^2+y^2-xy=11\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x-y+xy=7\\x^2-xy+y^2=7\end{matrix}\right.\)
Trừ 2 vế của HPT
\(\Leftrightarrow x^2-xy+y^2-x+y-xy=0\\ \Leftrightarrow x^2+y^2-x+y-2xy=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)
Với \(x=y\Leftrightarrow x-x+x^2=7\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\Rightarrow y=\sqrt{7}\\x=-\sqrt{7}\Rightarrow y=-\sqrt{7}\end{matrix}\right.\)
Với \(x=y+1\Leftrightarrow y+1-y+y\left(y+1\right)=7\)
\(\Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)
Vậy ...
x^2 - xy + y^2 = x - y + xy
<=> x^2 - 2xy + y^2 - (x - y) = 0
<=> (x - y)^2 - (x - y) = 0
<=> (x - y)(x - y - 1) = 0
TH1: x - y = 0 <=> x = y
x^2 - xy + y^2 = 7
<=> x^2 = 7 <=> x = sqrt(7) hoặc x = -sqrt(7)
Với x = sqrt(7) thì y = sqrt(7)
Với x = -sqrt(7) thì y = -sqrt(7)
TH2: x - y - 1 = 0 <=> x = y + 1
x - y + xy = 7
<=> (y + 1)y + 1 = 7
<=> y^2 + y - 6 = 0
<=> (y - 2)(y + 3) = 0
<=> y = 2 hoặc y = -3
Với y = 2 thì x = 2 + 1 = 3
Với y = -3 thì x = -3 + 1 = -2
\(\left\{{}\begin{matrix}x-y+xy=7\\x^2-xy+y^2=7\end{matrix}\right.\Leftrightarrow x-y+xy-x^2+xy-y^2=0\\ \Leftrightarrow x^2-2xy+y^2-x+y=0\\ \Leftrightarrow\left(x-y\right)^2-\left(x-y\right)=0\\ \Leftrightarrow\left(x-y\right)\left(x-y-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\\x=y+1\end{matrix}\right.\)
Với x=y thế vào pt(1) ta được:
\(x-y+xy=7\\ \Leftrightarrow y-y+y.y=7\\ \Leftrightarrow y^2=7\\ \Leftrightarrow\left[{}\begin{matrix}y=\sqrt{7}\Rightarrow x=\sqrt{7}\\y=\sqrt{7}\Rightarrow x=\sqrt{7}\end{matrix}\right.\)
Với x=y-1 thế vào pt(1) ta được:
\(y-1-y+\left(y+1\right).y=7\\ \Leftrightarrow y^2+y-6=0\\ \Leftrightarrow\left[{}\begin{matrix}y=2\Rightarrow x=3\\y=-3\Rightarrow x=-2\end{matrix}\right.\)
Giải hệ phương trình x^2+y^2+xy=7 và 9x^3=xy^2+70(x-y)
\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
giải hệ phương trình
Cộng vế:
\(\Rightarrow x^2+y^2+2xy+x+y=20\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-5-x\end{matrix}\right.\)
Thế vào pt đầu...
giải hệ phương trình
\(\left\{{}\begin{matrix}xy+x+y=5\\xy+x^2+y^2=7\end{matrix}\right.\)
đặt x+y = u ; xy = v đk: u2 ≥ 4v
\(\left\{{}\begin{matrix}u+v=5\\u^2-v=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u^2+u-12=0\left(1\right)\\u+v=5\left(2\right)\end{matrix}\right.\)
từ pt 1 => \(\left[{}\begin{matrix}u=-4\\u=3\end{matrix}\right.\)
nghiệm u = - 4 loại
u = 3 nhận => v = 2
<=> x+y = 3 ; xy = 2
đặt x+y = S ; xy = P đk: S2 ≥ 4P
=> x và y là nghiệm của phương trình
X2 - SX + P = 0
= X2 - 3X + 2 = 0
=> \(\left[{}\begin{matrix}X=2\\X=1\end{matrix}\right.\)
vậy (x;y) = {(1;2);(2;1)}
Giải hệ phương trình \(\hept{\begin{cases}xy-x+y=7\\x^2+y^2-2x-2y=11\end{cases}}\)
Mnnnn giúp tuii vs TT ¤¤¤
Giải hệ phương trình:
x2y + xy2 + x + y + xy = 11;
y2 + xy - y =9x
Mk nghĩ đề bài nên cho x ;y là số nguyên
Ta có:\(x^2y+xy^2+x+y+xy=11\)
\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)+xy=11\)
\(\Rightarrow\left(xy+1\right)\left(x+y\right)+\left(xy+1\right)=12\)
\(\Rightarrow\left(xy+1\right)\left(x+y\right)=12\)
Từ đây => \(\inƯ\left(12\right)\)
Làm nốt
giải hệ phương trình:
a) x + y + xy =11 va x^2y + xy^2 = 30
b) xy = -64 va 1/x - 1/y = 1/4
a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)
Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:
\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp
ra \(x=8;y=-8\)
Giải hệ phương trình
\(\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\x^2-xy+y^2=7\left(x-y\right)\end{cases}}\)
Khỏi cần đồng bậc gì đâu a ak
\(\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\x^2-xy+y^2=7\left(x-y\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2+3xy=19\left(x-y\right)^2\\\left(x-y\right)^2+xy=7\left(x-y\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}18\left(x-y\right)^2-3xy=0\\\left(x-y\right)^2-7\left(x-y\right)+xy=0\end{cases}}\)
Đặt \(\hept{\begin{cases}x-y=a\\xy=b\end{cases}}\)ta đc hệ
\(\hept{\begin{cases}18a^2-3b=0\\a^2-7a+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6a^2=b\\a^2-7a+6a^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6a^2=b\\7a^2-7a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}\left(h\right)\hept{\begin{cases}a=1\\b=6\end{cases}}}\)
Làm nốt =)
giải hệ phương trình : (x+1)(xy+1)=6 và x^2(y^2+y+1)=7