cho tam giác ABC vuông góc tại A có góc B =30độ kể AH vuông góc với BC (H thuộc BC) .Tính góc HAC
Cho Tam giác ABC có góc B=70độ góc C=30độ kẻ AH vuông góc với BC (H thuộc BC)
a) Tính góc HAB và góc HAC.
b) Kẻ tia phân giác của góc A cách BC ở D. Tính góc ADC và góc ADB.
Hình tự vẽ nha bạn
a> Xét tam giác vuông ABH có:
Góc B+ Góc BAH+ Góc AHB=180 độ (tổng 3 góc trong tam giác vuông ABH)
70+ Góc BAH+ 90=180
=>BAH=20 độ
Xét tam giác vuông AHC có
Góc C+ Góc AHC+ Góc HAC= 180(Tổng 3 góc trong tam giác vuông HAC)
30+90+Góc HAC=180
=> Góc HAC=60 độ
b> Ta có ABC=80 độ (tổng 3 góc trong tam giác HAC)
Mà AD là đường cao
=> Góc BAD=Góc DAC=40 độ
Xét tam giác ABD có
Góc BAD+Góc B+Góc ADB=180
40+70+Góc ADB=180
=> Góc ADB=70 độ
Xét tam giác ADC có
Góc C+ Góc DAC+ Góc ADC = 180
30+40+Góc ADC=180
=>Góc ADC=110 độ
Cho tam giác ABC vuông tại A có B =60° . Tia phân giác của góc A cắt BC tại D . Kẻ AH vuông góc với BC ( H thuộc BC )
a) Tính góc C
b) Tính góc ABH
c) Tính góc HAD
d) So sánh góc HAC và ABC
*( Bao gồm hình ảnh và câu trả lời )
a: góc C=90-60=30 độ
b: góc ABH=90-60=30 độ
d: góc HAC=90-30=60 độ
=>góc HAC=góc ABC
cho tam giác ABC vuông tại A có góc C = 3 độ ; tia phân giác của góc A cắt BC tại D . Kẻ AH vuông góc với BC ( H thuộc BC )
a, tính góc ADH
b, so sánh góc HAD và góc HAB
c, so sánh góc ABC và góc HAC
a: Xét ΔADC có
\(\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{ADH}=180^0-30^0-45^0\)
hay \(\widehat{ADH}=105^0\)
Cho tam giác ABC vuông tại A, góc B = 60*. Kẻ AH vuông góc với BC(H thuộc BC).Tia phân giác của góc HAC cắt BC ở D. CMR tam giác ABD có 3 góc bằng nhau.
cho tam giác ABC vuông tại A, AH vuông góc với BC ( H thuộc BC ). Tia phân giác góc HAB cắt BC tại D.
a) CM góc ABC= góc HAC
b) CMR tam giác CAD cân/////////////////////////////////////////////////////
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)
Cho tam giác ABC có B = 70 độ, C = 30 độ kẻ AH vuông góc với BC ( H thuộc BC )
a) tính góc CAB và góc HAC
b) kẻ phân giác góc A cắt BC tại D. Tính góc ADC và góc ADB
Cho Tam giác ABC vuông tại góc A, góc B=60 độ. Vẽ AH vuông góc với BC vuông tại H
Tính số đo góc HAc
Lời giải:
Ta thấy:
Xét tam giác vuông tại $H$ là $ABH$ có $\widehat{B}+\widehat{BAH}=90^0$
Xét tam giác vuông $BAC$ có: $\widehat{BAH}+\widehat{HAC}=\widehat{BAC}=90^0$
$\Rightarrow \widehat{B}+\widehat{BAH} = \widehat{BAH}+\widehat{HAC}$
$\Rightarrow \widehat{HAC}=\widehat{B}=60^0$
cho tam giác vuông ABC tại A, kẻ AH vuông góc với BC (H thuộc BC). Các tia phân giác góc B và góc HAC cắt nhau tại I. Chứng minh rằng góc AIB=90 độ