Cho tam giác DEF cân tại D có trung điểm là EF
a) cm : tam giác DEI=tam giác DFI suy ra D vuông góc với EF
b) Trên tia đối của tia ID lấy điểm A
Sao cho : DI=AI
CM : AE // DF và AE = DF
: Cho tam giác DEF vuông tại D. Tia phân giác của góc DEF cắt cạnh DF tại I. Kẻ IH vuông EF
a) Chứng minh: tam giác DEI = HEI và DI = IH
b) Gọi K là giao điểm của DE và IH. Chứng minh: tam giác IDK = IHF
c) Chứng minh tam giác EKF cân và DH // KF
d) Tìm điều kiện của tam giác DEF để D là trung điểm của EK.
a: Xét ΔDEI vuông tại D và ΔHEI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó: ΔDEI=ΔHEI
Suy ra: ID=IH
b: Xét ΔIDK vuông tại D và ΔIHF vuông tại H có
ID=IH
\(\widehat{IDK}=\widehat{IHF}\)
Do đó: ΔIDK=ΔIHF
c: Ta có: ΔIDK=ΔIHF
nên DK=HF
Ta có: ED+DK=EK
EH+HF=EF
mà ED=EH
và DK=HF
nên EK=EF
hay ΔEKF cân tại E
Xét ΔEKF có
ED/DK=EH/HF
nên DH//KF
cho tam giác DEF cân tại D. Gọi H là trung điểm của EF
a)c/m:tam giác DEH=tam giác DFH và DH vuông góc EF
b) kẻ HM vuông góc DE tại M, HN vuông góc DF tại N. C/m tam giác HMNcân tại H
a)xét tam giác DEH và tam giác DFH có:
EH=FH ( gt)
góc DHE=góc DHF ( vì tam giác DEF cân tại D)
DH:cạnh chung
Do đó: tam giác DEH=tam giác DFH(c-g-c)
Cho tam giác EDF cân tại E. Trên tia đối của tia DF lấy điểm A, trên tia đối của tia FD lấy điểm B sao cho AD=BF.
a, Chứng minh: Tam giác EAD= tam giác EBF.
b, Kẻ DM vuông góc AE ( M thuộc AE); FN vuông góc BE (F thuộc BE). Chứng minh: MD= NF.
c, Gọi K là giao điểm của MD và NF. Chứng minh: Tam giác KDF cân.
d, Khi góc DEF=60° và AD=DF=FB. Tính góc DKF.
Vẽ hình giúp mình nữa nha (ko có cũng được ạ)
Thank mn~~
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Trên tia đối của tia MD lấy điểm N sao cho MN = MD.
a)Chứng minh ED//FH và DM vuông góc EF
b)Trên mặt phẳng bờ là DF
a: Sửa đề: Cm ED//FN và FN vuông góc với FD
Xét tứ giác DENF có
M là trung điểm chung của DN và EF
góc EDF=90 độ
Do đó: DENF là hình chữ nhật
=>ED//FN và FN vuông góc với FD
M.n giải giúp toi2 bài toán nay nhe
Cho tam giác ABC cân tại A có AM là trung tuyến. Đường cao BE cắt AM tại H. CM CH vuông góc với AB
2. Cho tam giác DEF vuông tại D có cạnh DE= 12 cm, cạnh DF = 16 cm
Trên cạnh DF lấy điểm A sao cho DA=DE( A nằm giữa D và F) Trên tia đối của tia ED lấy điểm B sao cho DB= DF( E nằm giữa D và B). KẻDH là đường cao của tam giác DEF. Đường thẳng DH cắt AB tại P
A) Tính độ dài cạnh EF, CM tam giác DEF = tam giác DAB, CM DP là trung tuyến của tam giác DAB
Giải gấp cho mình trong ngày hom nay nhe
1 ) Do tam giác ABC cân tại A , AM là trung tuyến
=> AM là đường cao của BC
Lại có : BE là đường cao của AC
Mà BE cắt AM tại H
=> H là trực tâm của tam giác ABC .
=> CH vuông góc với AB
2 ) Vào mục câu hỏi hay :
Câu hỏi của Hỏa Long Natsu ( mình )
Chúc bạn học tốt !!!
Cho ABC vuông tại A có AB= 2AC và D là trung điểm của AB. Vẽ DE vuôn góc với BC tại E. Trên tia đối của DE, lấy điểm F sao cho DF=DE. a) Chứng minh tam giác ADF= tam giác BDE và AF vuông góc FE. b) Vẽ AH vuông góc với BC tại H. Chứng minh AF=EH. c) Trên tia đối của CA lấy điểm K sao cho Ck=CA. Chứng minh KH=AE. d) Chứng minh tam giác AKE cân
a)Xet 2 tam giác ADF va BDE có BD=AD goc ADF=goc BDE DF=DE => tam giac ADF=tam giac BDE => goc AFD= goc BFD => goc AFD=90 AF vuong goc voi FE
a) Xét 2 tam giác ADF và BDE có: BD=AD góc ADF=góc BDE
ngu hả cần câu d à nha mà thôi giải đc r không cần
Cho tam giác DEF vuông tại D. Trên tia đối của DF lấy điểm M sao cho DM = DF a, cho DE= 9cm, DF = 12 cm, tính EF b, CM ∆DEM= ∆DEF c, kẻ DH vuông góc với ME, DK vuông góc với EF, cm ∆HEK cân d, CM HD // EF
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
a) Xét tam giác EDF có: EF2 = DE2 + DF2 (đ/lí py-ta-go)
=> EF2 = 92 + 122
=> EF2 = 81 + 144 = 225
=> EF = 112,5 cm
b) Xét tam giác DEM và tam giác DEF có :
EDM = EDF = 1v
ED chung
DM = DF (gt)
=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)
Cho tam giác DEF cân tại D. I là trung điểm EF a) chứng minh DI là tia phân giác góc EDF b) từ I kẻ IN vuông góc DE; IN vuông góc DF Chứng minh tam giác IMN cân c) trên tia NI lấy điểm P sao cho IN=IP Chứng minh MP song song với DI
a: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là phân giác
b: Xét ΔDMI vuông tại M và ΔDNI vuông tại N có
DI chung
\(\widehat{MDI}=\widehat{NDI}\)
DO đó; ΔDMI=ΔDNI
Suy ra: IM=IN
hay ΔIMN cân tại I
cho tam giác def vuông tại D có DE < DF. Gọi I là trung điểm của DF. Trên tia đối của tia IE lấy điểm A sao cho EI = IA. Chứng minh:
a)tan giác DEI = tam giác FAI
b) DF vuông góc với AF
c) EF song song với DA
d) Qua điểm D, kẻ đường thẳng song song với EA và cắt FA tại B. Chứng minh rằng A là trung điểm của FB.
e) Gọi K là trung điểm của DA. Chứng minh 3 điểm E,K,B thẳng hàng