help me giúp ................. em giải bài này với
1)(a+c/a+b)+(b+d/b+c)+(c+a/c+d)+(d+b/d+a)
2)(1/2a+b)+(1/2b+c)+(1/2c+a) (với a,b,c dương , a+b+c=1)
Rút gọn biểu thức:
E=(-a-b+c+d)-(d+c-b-2a)
F=(a-2b-c+2d)-(3d-2c-3b+a)+15
G=a(2b-c)-b(a+c)-a(c+b)
H=(a+3b)(c-d)-(3a-d)(b+c)-2c(b-a)+2b(a+d)
help me!!!!!!!!!!!!!!!!!!!!!!
mình đang gấp giúp mình với
GIẢI ĐẦY ĐỦ NHA
ai làm đúng đầy đủ mình cho 1 tick
E=(-a-b+c+d)-(d+c-b-2a)
E=-a-b+c+d-d-c+b+2a
E=-a+(-)b+c+d+(-d)+(-c)+b+2a
E=-a+(-b)+c+d+(-d)+(-c)+b+2a
E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a
F=(a-2b-c-2d)-(3d-2c-3b+a)+15
F=a-2b-c-2d-3d+2c+3b-a+15
F=a+(-2b)+(-c)+(-2d)+(-3d)+2c+3b+(-a)+15
F=(-2b+3b)+(-c+2c)+[-2d+(-3d)]+(-a+a)+15
F=b+c+(-5d)+0+15=b+c+(-5d)+15
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)
\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)
4c,
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
(a,b,c,d khác 0)
chứng tỏ rằng
bài 1: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
bài 2:\(\dfrac{2a+c}{3a-c}=\dfrac{2b+d}{3b-d}\)
bài 3:\(\dfrac{5a-2c}{3a-4c}=\dfrac{5b-2c}{3b-4d}\)
giúp nhanh nha
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Cho a,b,c,d >0, a + b + c + d=4.cmr: a/(1 + b^2c) + b/(1 + c^2d) + c/(1 + d^2a) + d/(1 + a^2b) >=2
a+b+c-2d/a=b+d+a-2c/b=b+d+c-2a/c=a+c+d-2b/d tính M=(1+a/b)(1+b/c)(1+c/d)(1+d/a)
\(\frac{a+b+c-2d}{a}=\frac{b+d+a-2c}{b}=\frac{b+d+c-2a}{c}=\frac{a+c+d-2b}{d}\)
\(=\frac{\left(a+b+c-2d\right)+\left(b+d+a-2c\right)+\left(b+d+c-2a\right)+\left(a+c+d-2b\right)}{a+b+c+d}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\)
\(\Leftrightarrow a=b=c=d\).
\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{d}\right)\left(1+\frac{d}{a}\right)=2^4=16\)
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.
CMR \(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
MN giúp em với em cảm ơn ạ !!!
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.CMR
\(\dfrac{a^2b}{b+2c}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
Mọi người giúp em với ạ
cho a,b,c là các số thực dương thỏa mãn a+b+c+1=4abc.
CMR:\(\dfrac{a^2b}{b+2a}+\dfrac{b^2c}{c+2a}+\dfrac{c^2a}{a+2b}\ge1\)
MN giúp em với em caanf gap a