Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
*f(0) nguyên suy ra 0+0+c=c nguyên
*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên
*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)
Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)
Cho đa thức: f(x)=ax2+bx+c. Biết rằng các giá trị của đa thức tại x=0, x=1,x=-1 đều là những số nguyên. Chứng tỏ rằng 2a,a+b,c là những số nguyên.
Cho `x=0`
`=> f(0) = a.0^2 + b.0 + c`
`=> f(0) = c`
Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên
Cho `x=1`
`=> f(1) = a.1^2 + b.1+c`
`=> f(1)= a+b+c` (1)
Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên
Cho `x= -1`
`=> f(-1) = a.(-1)^2 + b.(-1)+c`
`=> f(-1) = a -b+c` (2)
Từ `(1)` và `(2)`
`=>f(1) + f(-1) = a+b+c + a-b+c`
`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên
Mà `c` là số nguyên nên `2c` là số nguyên
`=> 2a` là số nguyên
Vậy `2a ; a+b ,c` là những số nguyên
đề bài toán lớp 7 : ho đa thức : f (x) = ax2+bx+cax2+bx+c . Biết rằng các giá trị cuả đa thức tại x = 0 , x = 1 , x = -1 đều là những số nguyên . Chúng tỏ rằng 2a , a + b , c là những số nguyên.
đề bài toán lớp 7 : ho đa thức : f (x) = ax2+bx+cax2+bx+c . Biết rằng các giá trị cuả đa thức tại x = 0 , x = 1 , x = -1 đều là những số nguyên . Chúng tỏ rằng 2a , a + b , c là những số nguyên.
ai làm đc cho 1000000000000000000000 like
bn tham khảo câu hỏi của bn vu thanh tung ở dưới nha
Cho đa thức f(x)=ax2+bx+c với các hệ số abc thỏa mãn 11a-b+5c=0, Cm rằng f(1) và f(-2) không thể cùng dấu
Lời giải:
Ta có:
$f(1)=a+b+c$
$f(-2)=4a-2b+c$
$\Rightarrow 2f(-2)+3f(1)=2(4a-2b+c)+3(a+b+c)=11a-b+5c=0$
$\Rightarrow f(-2)=\frac{-3}{2}f(1)$
Vì $\frac{-3}{2}<0$ nên $f(-2)$ và $f(1)$ không thể cùng dấu.
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số hữu tỉ thỏa mãn 2a-b=0
CMR: f(-5)×f(3) ko thể là số âm.
Cho đa thức f(x) = ax2 + bx + c (a, b, c là các hằng số). Biết f(1) = 6; f(2) = 16. Tính f(12) - f(-9)
Lời giải:
$f(1)=a+b+c=6$
$f(2)=4a+2b+c=16$
$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$
$=63a+21b=21(3a+b)$
$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$
\(f\left(0\right)=c⋮3\) ;
\(f\left(1\right)=a+b+c⋮3\) mà \(c⋮3\Rightarrow a+b⋮3\)
\(f\left(-1\right)=a-b+c=-2b+\left(a+b+c\right)⋮3\) mà \(a+b+c⋮3\Rightarrow-2b⋮3\Rightarrow b⋮3\) (do 2 và 3 nguyên tố cùng nhau)
\(\left\{{}\begin{matrix}a+b+c⋮3\\b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow a⋮3\)
cho đa thức f(x) = ax2 + bx +c với a,b,c là các số thực .Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a, 2b có giá trị nguyên
\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên
\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên
\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên
=> 4a có giá trị nguyên
=> 2b có giá trị nguyên.