Cho `x=0`
`=> f(0) = a.0^2 + b.0 + c`
`=> f(0) = c`
Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên
Cho `x=1`
`=> f(1) = a.1^2 + b.1+c`
`=> f(1)= a+b+c` (1)
Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên
Cho `x= -1`
`=> f(-1) = a.(-1)^2 + b.(-1)+c`
`=> f(-1) = a -b+c` (2)
Từ `(1)` và `(2)`
`=>f(1) + f(-1) = a+b+c + a-b+c`
`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên
Mà `c` là số nguyên nên `2c` là số nguyên
`=> 2a` là số nguyên
Vậy `2a ; a+b ,c` là những số nguyên