Cho đường thẳng xác định bởi đường thẳng thẳng qua trục hoành có phương trình là
Cho phương trình đường thẳng (d):y=ã+b
a, Xác định phương trình đường thẳng (d),biết rằng đường thẳng (d) song song với đường thẳng y=-x và cắt trục hoành tại điểm có hoành độ bằng 3
b, Vẽ đường thẳng (d) có phương trình tìm được ở câu a
c, Tìm góc tạo bởi đường thẳng (d) với trục Ox
xác định phương trình đường thẳng // với đường thẳng y=-3x+2 và cắt trục hoành tại điểm có hoành độ là 6
Gọi (d): y=ax+b(a<>0) là phương trình đường thẳng cần tìm
Vì (d)//y=-3x+2 nên \(\left\{{}\begin{matrix}a=-3\\b< >2\end{matrix}\right.\)
Vậy: y=-3x+b
Thay x=6 và y=0 vào (d), ta được:
\(b-3\cdot6=0\)
=>b-18=0
=>b=18
Vậy: (d): y=-3x+18
Bài 1. Cho hàm số y=(2m+3)x+m−1 có đồ thị là đường thẳng d . a) Xác định hàm số biết đường thẳng d đi qua điểm C(3;1). b) Xác định hàm số biết đường thẳng d cắt trục hoành tại điểm có hoành độ băng −1. c) Xác định hàm số biết đường thẳng d cắt trục tung tại điểm có tung độ bằng 3. Bài 2. Cho hàm số y=(-2m+1)x+m+3 có đồ thị là đường thẳng d . a) Xác định hàm số biết đường thẳng d có hệ số góc bằng 5. b) Xác định hàm số biết đường thẳng d song song với đường thẳng d:y=3x+7. c) Xác định hàm số biết đường thẳng d vuông góc với đường thẳng d, :y= -1/2x+5
2:
a: Hệ số góc là 5 nên -2m+1=5
=>-2m=4
=>m=-2
b: (d1)//(d)
=>-2m+1=3 và m+3<>7
=>m=-1
c: Hai đường vuông góc với nhau
=>-1/2(-2m+1)=-1
=>m^2-1/2+1=0
=>m^2+1/2=0(loại)
Cho đường thẳng\(\left(d\right):y=4x+5\), đường thẳng (d') đối xứng với đường thẳng (d) qua trục hoành có phương trình là ?
Lấy A(1;9) và B(2;13) thuộc (d)
Gọi A',B' lần lượt là điểm đối xứng của A(1;9) và B(2;13) qua trục hoành Ox
Vì A' là điểm đối xứng của A(1;9) qua trục hoành Ox nên tọa độ của A' là:
\(\left\{{}\begin{matrix}x=x_A=1\\y=-y_A=-9\end{matrix}\right.\)
Vậy: A'(1;-9)
Vì B' là điểm đối xứng của B(2;13) qua trục hoành Ox nên tọa độ của B' là:
\(\left\{{}\begin{matrix}x_{B'}=x_B=2\\y_{B'}=-y_B=-13\end{matrix}\right.\)
=>B'(2;-13)
Ta có: A,B thuộc (d)
A',B' lần lượt là điểm đối xứng của A,B qua trục Ox
(d') là đường thẳng đối xứng của (d) qua trục Ox
=>A',B' thuộc (d')
Đặt (d'): y=ax+b(a\(\ne\)0)
Thay x=1 và y=-9 vào (d'), ta được:
\(1\cdot a+b=-9\)
=>a+b=-9(1)
Thay x=2 và y=-13 vào (d'), ta được:
\(2\cdot a+b=-13\)
=>2a+b=-13(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-9\\2a+b=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=4\\a+b=-9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-4\\b=-9-a=-9-\left(-4\right)=-5\end{matrix}\right.\)
Vậy: (d'): y=-4x-5
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
Vậy: (d): y=2x+b
Vì (d) đi qua điểm C(-1;4) nên
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
hay b=6
Vậy: (d): y=2x+6
Thay y=0 vào (d), ta được:
2x+6=0
hay x=-3
Vậy: A(-3;0)
b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Trên mặt phẳng tọa độ cho hai điểm B(4; 0) và C(-1; 4).
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y = 2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax +b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút).
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất).
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
=> (d): y=2x+b
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
\(\Leftrightarrow b=6\)
Vậy: (D): y=2x+6
Thay y=0 vào (d),ta được:
\(2x+6=0\)
\(\Leftrightarrow x=-3\)
Vậy: A(-3;0)
b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Vậy: \(a=-\dfrac{4}{5}\); \(b=\dfrac{16}{5}\)
c) Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)
Độ dài đoạn thẳng AC là:
\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)
Độ dài đoạn thẳng BC là:
\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=7+2\sqrt{5}+\sqrt{41}\)
\(\simeq17,9\left(cm\right)\)
Cho đường thẳng (d) có phương trình: (a-1).x + 2y = a
Xác định giá trị của a để đường thẳng (d) song song với trục hoành
Bài 3: Xác định hàm số y = ax + b biết:
a) a=3 và đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 2
b) Đồ thị hàm số song song với đường thẳng y = -x + 6 và đường thẳng đi qua điểm (-1; -9)
c) Có nhận xét gì về góc tạo bởi 2 đường thẳng trên với trục Ox
a: a=3 nên y=3x+b
Thay x=2 và y=0 vào y=3x+b, ta được:
\(3\cdot2+b=0\)
=>b+6=0
=>b=-6
vậy: y=3x-6
b: Vì (d): y=ax+b//y=-x+6 nên \(\left\{{}\begin{matrix}a=-1\\b\ne6\end{matrix}\right.\)
vậy: (d): y=-x+b
Thay x=-1 và y=-9 vào (d), ta được:
\(b-\left(-1\right)=-9\)
=>b+1=-9
=>b=-10
Vậy: (d): y=-x-10
c: (d1): y=3x-6 có a=3>0
nên góc tạo bởi đường thẳng này với trục Ox là góc nhọn
Vì (d2): y=-x-10 có a=-1<0
nên góc tạo bởi đường thẳng này với trục Ox là góc tù
Bài 6: Trên mặt phẳng tọa độ cho 2 điểm B(4;0) và C(-1;4)
a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng y=2x-3. Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox.
b) Xác định các hệ số a và b biết đồ thị hàm số y= ax+b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC với trụ hoành Ox (làm tròn đến phút)
c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là cm) (kết quả làm tròn đến chữ số thập phân thứ nhất)
Mn giúp e với, xin cảm ơn!
Cho hàm số y= mx+1-2x có đồ thị là đường thẳng (d)
a) Giả sử đường thẳng (d) cắt trục hoành tại A và cắt trục tung tại B. tìm m để tam giác OAB cân
b) c/m khi m thay đổi, đường thẳng (d) luôn đi qua I cố định
c) Viết phương trình đường thẳng (OI)
d) Tìm m để khoảng cách từ điểm O đến đường thẳng (d) lớn nhất
a: y=mx+1-2x=x(m-2)+1
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-1}{m-2}\end{matrix}\right.\)
=>\(A\left(-\dfrac{1}{m-2};0\right)\)
=>\(OA=\dfrac{1}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(m-2\right)+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=0\left(m-2\right)+1=1\end{matrix}\right.\)
=>B(0;1)
=>OB=1
ΔOAB cân tại O
=>OA=OB
=>\(\dfrac{1}{\left|m-2\right|}=1\)
=>|m-2|=1
=>\(\left[{}\begin{matrix}m-2=-1\\m-2=1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)
b: y=mx-2x+1
Tọa độ I cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)
c: O(0;0); I(0;1)
=>O,I đều nằm trên trục Ox
=>Ox là đường thẳng đi qua OI và có phương trình đường thẳng là y=0