Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc anh nguyễn
Xem chi tiết
son duong
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Phí Đức
8 tháng 8 2021 lúc 11:50

Xét $\Delta ABC$:

$\cos B=\sin C=0,6$

$\cos^2B=0,6.0,6=0,36$

Mà $\cos^2B+\sin^2B=1$

$\Rightarrow \sin^2B=0,64\\\Leftrightarrow \sinB=0,8(vì\,\,\sinB>0)$

$\Rightarrow \sin B=\cos C=0,8$

Ta có: $\tan C=\dfrac{\sin C}{\cos C}=\dfrac{0,6}{0,8}=0,75$

$\cotC=\dfrac{\cosC}{\sinC}=\dfrac{0,8}{0,6}=\dfrac{4}{3}$

Vậy $\sin C=0,6;\cos C=0,8;\tanC=0,75;\cotC=\dfrac{4}{3}$

Chau Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:09

\(\cos\widehat{B}=0.6\)

\(\sin\widehat{B}=0.8\)

\(\tan\widehat{B}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\dfrac{3}{4}\)

cưdáờng dá
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2017 lúc 11:37

Tương tự câu 2

Quốc Huy
Xem chi tiết
Thầy Kim
18 tháng 10 2021 lúc 11:52

mik nghĩ là sinC=0,8

                 CosC=0,6

                 tanC=\(\dfrac{\text{4}}{3}\)

                 cotgC=0,75

nthv_.
18 tháng 10 2021 lúc 11:55

\(cosC=\dfrac{3}{5}\)

\(sinC=\dfrac{4}{5}\)

\(cotgC=\dfrac{3}{4}\)

\(tanC=\dfrac{4}{3}\)

Bảo Linh
Xem chi tiết
Nguyễn Đức Trí
22 tháng 7 2023 lúc 22:36

\(ab=8;ac=15\)

\(\Rightarrow\dfrac{b}{c}=\dfrac{8}{15}\)

\(tanB=\dfrac{b}{c}=\dfrac{8}{15}\Rightarrow cotB=\dfrac{1}{tanB}=\dfrac{15}{8}\left(tanB.cotB=1\right)\)

\(1+tan^2B=\dfrac{1}{cos^2B}\Rightarrow cos^2B=\dfrac{1}{1+tan^2B}\)

\(\Rightarrow cos^2B=\dfrac{1}{1+\dfrac{64}{225}}\dfrac{1}{\dfrac{289}{225}}=\dfrac{225}{289}\)

\(\Rightarrow cosB=\sqrt[]{\dfrac{225}{289}}=\dfrac{15}{17}\)

\(tanB=\dfrac{sinB}{cosB}\Rightarrow sinB=tanB.cosC=\dfrac{8}{15}.\dfrac{15}{17}\)

\(\Rightarrow sinB=\dfrac{8}{17}\)

Vì \(B+C=90^o\Rightarrow C=90^o-B\)

\(\Rightarrow\left\{{}\begin{matrix}sinC=cosB=\dfrac{15}{17}\\cosC=sinB=\dfrac{8}{17}\\tanC=cotB=\dfrac{15}{8}\\cotC=tanB=\dfrac{8}{15}\end{matrix}\right.\)

Trần Đình Thiên
22 tháng 7 2023 lúc 21:21

Để tính các tỉ số lượng giác của góc B, ta sử dụng định nghĩa của các tỉ số lượng giác: sin(B) = cạnh đối diện / cạnh huyền = AC / AB = 15 / 8 cos(B) = cạnh kề / cạnh huyền = BC / AB = ? tan(B) = cạnh đối diện / cạnh kề = AC / BC = ? Để tính tỉ số lượng giác của góc C, ta sử dụng định nghĩa của các tỉ số lượng giác: sin(C) = cạnh đối diện / cạnh huyền = AB / AC = 8 / 15 cos(C) = cạnh kề / cạnh huyền = BC / AC = ? tan(C) = cạnh đối diện / cạnh kề = AB / BC = ? Tuy nhiên, để tính các tỉ số lượng giác của góc C, ta cần tìm giá trị của cạnh BC. Ta có thể sử dụng định lý Pythagoras trong tam giác vuông để tìm giá trị này: BC^2 = AC^2 - AB^2 BC^2 = 15^2 - 8^2 BC^2 = 225 - 64 BC^2 = 161 BC = √161 Sau đó, ta có thể tính các tỉ số lượng giác của góc B và góc C: sin(B) = 15 / 8 cos(B) = BC / AB = √161 / 8 tan(B) = 15 / √161 sin(C) = 8 / 15 cos(C) = BC / AC = √161 / 15 tan(C) = 8 / √161

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 8 2017 lúc 9:21

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

B C 2 = A B 2 + A C 2 = 6 2 + 8 2  = 100

Suy ra: BC = 10 (cm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9