TÌM SỐ TỰ NHIÊN P SAO CHO P=(N-2)(N2+N-5) LÀ SỐ NGUYÊN TỐ
Tìm số tự nhiên n sao cho : p = ( n - 2)(n2 + n - 5) là số nguyên tố
Lời giải:
Để $p=(n-2)(n^2+n-5)$ là số nguyên tố thì bản thân 1 trong 2 thừa số $n-2, n^2+n-5$ là số nguyên tố và số còn lại bằng 1.
TH1: $n-2=1\Rightarrow n=3$. Khi đó: $p=7$ là số nguyên tố (thỏa mãn)
TH2: $n^2+n-5=1\Rightarrow n^2+n-6=0\Rightarrow (n-2)(n+3)=0$
$\Rightarrow n=2$
$\Rightarrow p=0$ không là snt (loại)
Vậy $n=3$
bài 1: tìm số tự nhiên n biết:
2 + 4 + 6 +....+ (2n) = 756
bài 2: tìm số tự nhiên n sao cho p = ( n - 2 )(n2 + n - 5) là số nguyên tố.
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512
Bài 2
\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.
Tìm số tự nhiên n sao cho p = ( n - 2 ) . ( n2 + n - 1 ) là số nguyên tố
tìm số tự nhiên n sao cho p=(n-3)(n2 –n -1) là số nguyên tố
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Bài 6. Tìm số tự nhiên n để p = ( n – 2 )( n2 + n – 5 ) là số nguyên tố
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Câu 1 :a. Tìm n để n2+ 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3 . Hỏi n2 là 2006 là số nguyên tố hay hợp số .
Câu 2 : Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n2 - 1 và cba = ( n-2 ).2
Bạn nào trả lời giúp mình đi
Tham khảo câu hỏi tương tự nhé bạn .
Tick tớ đc chứ
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
Bài 1: Tìm n thuộc N* sao cho n3 - n2 + n - 1 là số tự nhiên
Bài 2: C/m nếu 2n - 1 (n > 2) là số nguyên tố thì 2n + 1 là hợp số
Bài 3: Cho m và m2 + 2 là số nguyên tố. C/m m3 + 2 cùng là số nguyên tố
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
3 ,
Giải:
Với m=2 thì m2+2=4+2= 6 là hợp số (loại)
Với m=3 thì m2+2 = 9+2= 11 (thoải mãn)
Với m= 3k+1 ( với k ẻ N) thì: m2+2 = (3k+1)2 +2 = 3(3k2+2k+1) là hợp số ( loại)
Với m= 3k+2 thì: m2+2= (3k+2)2 +2 = 3(3k2+4k+2) là hợp số (loại)
Vậy với m= 3 thì m và m2+2 là số nguyên tố. Khi đó m3+ 2= 33+2 = 29 là số nguyên tố.