P=m^2-2m-3/(m-2)^2 tìm m để P đạt GTLN
Tìm x để biểu thức M=3/(2x^2-3x+4) đạt GTLN. Khi đó hãy tìm GTLN của biểu thức M.
cho x=1-2m , y=-3-4m tìm m để x.y đạt GTLN
Bạn kiểm tra lại đề, nếu x và y theo m đúng thế này thì \(xy\) chỉ có GTNN chứ không có GTLN
Giai hệ phương trình
\(\int^{\left(m+1\right)x+my=2m-1}_{mx-y=m^2-2}\)
Tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn A=xy đạt GTLN
Ta có hệ phương trình
\(\hept{\begin{cases}\left(m+1\right)x+my-2m-1\\mx-y=m^2-2\end{cases}}\)
Tìm m để hệ phương trình
a) có nghiệm TM
b) x;y đạt GTLN
cho phân thức A= (3m+1)/(m-2)
tìm m là số nguyên dương để A đạt GTLNvới m>=3 . tìm GTLN của Acho phân thức A= (3m+1)/(m-2)
tìm m là số nguyên dương để A đạt GTLNvới m>=3 . tìm GTLN của Atìm m để y=\(\dfrac{1}{3}x^3+\left(m^2-1\right)x^2+\left(2m-3\right)x+2\) đạt cực đại tại x=2
b) tìm m để y=\(\dfrac{1}{3}x^3+mx^2+3x+1\) đạt cực đại tại x=-3
a.
\(y'=x^2+2\left(m^2-1\right)x+2m-3\)
\(y''=2x+2\left(m^2-1\right)\)
Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)
Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài
b.
\(y'=x^2+2mx+3\)
\(y''=2x+2m\)
Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)
\(\Rightarrow m=2\)
tìm m để PT: x2-2x-(m-1)(m-3)=0
cps 2 nghiệm x1,x2: A= (x1+1)x2 đạt GTLN
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+y=m+1\\x^2y+xy^2=2m^2-m-3\end{matrix}\right.\)
Tìm m để hệ có nghiệm \(x_0,y_0\) mà
a) \(x_0.y_o\)đạt GTNN
b) \(x_0.y_0\)đạt GTLN