tính nhanh:
A=\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính nhanh:
a) \(2.\frac{3}{7}+\left(\frac{2}{9}-1\frac{3}{7}\right)-\frac{5}{3}:\frac{1}{9}\)
b) \(\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}\)
c )\(\left(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}\right).\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{24}\right)\)
d) \(19\frac{5}{8}:\frac{7}{12}-15\frac{1}{4}:\frac{7}{12}\)
e) \(\frac{2}{5}.\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
a: \(=\dfrac{17}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9=1+\dfrac{2}{9}-15=-14+\dfrac{2}{9}=-\dfrac{126}{9}+\dfrac{2}{9}=-\dfrac{124}{9}\)
b: \(=\dfrac{-11}{23}\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}=\dfrac{-22}{23}-\dfrac{1}{23}=-1\)
c: \(=\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\dfrac{4-3-1}{24}=0\)
d: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{15}{2}\)
Tính nhanh:a) \(\left(\frac{67}{111}+\frac{2}{33}-\frac{15}{117}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)
b)\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
Tính nhanh:
a)\(\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}};\)
b) \(\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\)
c)\(\left[ {\left( { - \frac{4}{9}} \right) + \frac{3}{5}} \right]:\frac{{13}}{{17}} + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}};\)
d) \(\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\)
a)
\(\begin{array}{l}\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}}\\ = \frac{7}{{11}}.\left( {\frac{{13}}{{23}} + \frac{{10}}{{23}}} \right)\\ = \frac{7}{{11}}.\frac{23}{23}\\ = \frac{7}{{11}}.1\\ = \frac{7}{{11}}\end{array}\)
b)
\(\begin{array}{l}\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\\ = \frac{5}{9}.\left( {\frac{{23}}{{11}} - \frac{1}{{11}} + 1} \right)\\ = \frac{5}{9}.\left( {2 + 1} \right)\\ = \frac{5}{9}.3 = \frac{5}{3}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( { - \frac{4}{9} + \frac{3}{5}} \right):\frac{{13}}{{17}}} \right] + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}}\\ = \left( { - \frac{4}{9} + \frac{3}{5}} \right).\frac{{17}}{{13}} + \left( {\frac{2}{5} - \frac{5}{9}} \right).\frac{{17}}{{13}}\\ = \frac{{17}}{{13}}.\left( { - \frac{4}{9} + \frac{3}{5} + \frac{2}{5} - \frac{5}{9}} \right)\\ = \frac{{17}}{{13}}.\left[ {\left( { - \frac{4}{9} - \frac{5}{9}} \right) + \left( {\frac{3}{5} + \frac{2}{5}} \right)} \right]\\ =\frac{{17}}{{13}}. (\frac{-9}{9}+\frac{5}{5})\\= \frac{{17}}{{13}}.\left( { - 1 + 1} \right)\\ = \frac{{17}}{{13}}.0 = 0\end{array}\)
d)
\(\begin{array}{l}\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\\ = \frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{6}{{22}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{4}{{10}}} \right)\\ = \frac{3}{{16}}:\frac{{ - 3}}{{22}} + \frac{3}{{16}}:\frac{{ - 3}}{{10}}\\ = \frac{3}{{16}}.\frac{{ - 22}}{3} + \frac{3}{{16}}.\frac{{ - 10}}{3}\\ = \frac{3}{{16}}.\left( {\frac{{ - 22}}{3} + \frac{{ - 10}}{3}} \right)\\ = \frac{3}{{16}}.\frac{{ - 32}}{3}\\ = - 2\end{array}\)
tính nhanh:a)\(\frac{1}{2}\)+ \(\frac{2}{3}\)-\(\frac{3}{4}\)+\(\frac{4}{5}\)-\(\frac{5}{6}\)+\(\frac{6}{7}\)+\(\frac{5}{6}\)-\(\frac{4}{5}\)+\(\frac{3}{4}\)-\(\frac{2}{3}\)+\(\frac{1}{2}\)
\(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\frac{6}{7}+\frac{5}{6}-\frac{4}{5}+\frac{3}{4}-\frac{2}{3}+\frac{1}{2}\)
\(=\left(\frac{1}{2}+\frac{1}{2}+\frac{6}{7}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)+\left(\frac{-3}{4}+\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)+\left(\frac{-5}{6}+\frac{5}{6}\right)\)
\(=\frac{13}{7}+0+0+0+0\)
\(=\frac{13}{7}\)
\(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\frac{6}{7}+\frac{5}{6}-\frac{4}{5}+\frac{3}{4}-\frac{2}{3}+\frac{1}{2}.\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)-\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)-\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{6}{7}\)
\(=1+0-0+0+\frac{6}{7}\)
\(=1+\frac{6}{7}=1\frac{6}{7}\)
\(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\frac{6}{7}+\frac{5}{6}-\frac{4}{5}+\frac{3}{4}-\frac{2}{3}+\frac{1}{2}\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{2}{3}-\frac{2}{3}\right)-\left(\frac{3}{4}-\frac{3}{4}\right)+\left(\frac{4}{5}-\frac{4}{5}\right)-\left(\frac{5}{6}-\frac{5}{6}\right)+\frac{6}{7}\)
\(=1+0-0+0+\frac{6}{7}\)
\(=1+\frac{6}{7}\)
\(=\frac{13}{7}\)
Tính
\(\frac{1}{2}-\frac{1}{3}-\frac{2}{3}+\frac{1}{4}-\frac{2}{4}+\frac{3}{4}+...+\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}\)
a, Tính : \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b, Tính : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c, Tính : \(\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Tính \(\frac{1}{2}-\frac{1}{3}-\frac{2}{3}+\frac{1}{4}+\frac{2}{4}+\frac{3}{4}-\frac{1}{5}-\frac{2}{5}-\frac{3}{5}-\frac{4}{5}+...+\frac{1}{10}+...+\frac{9}{10}\)
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
Đặt A = 1/2 - 1/3 - 2/3 + 1/4 + 2/4 + 3/4 - 1/5 - 2/5 - 3/5 - 4/5 + ... + 1/10 + ...+ 9/10
A = 1/2 - ( 1/3 + 2/3) + (1/4 + 2/4 + 3/4) - ( 1/5 + 2/5 + 3/5 + 4/5) + ( 1/6 + 2/6 + ... + 5/6) - ( 1/7 + 2/7 + ... + 6/7) + ( 1/8 + 2/8 + ... + 7/8) - ( 1/9 + 2/9 + ... + 8/9)
A = 1/2 - 1 + [( 1/4 + 3/4) + 2/4] - [(1/5 + 4/5) + (2/5 + 3/5)] + [(1/6+5/6) + ( 2/6 + 4/6) + 3/6] - [(1/7 + 6/7) + (2/7 + 5/7) + (3/7 + 4/7)] + [(1/8 + 7/8) + (2/8 + 6/8) + (3/8 + 5/8) + 4/8)] - [(1/9 + 8/9) + (2/9 + 7/9) + (3/9 + 6/9) + (4/9 + 5/9)] + [(1/10 + 9/10) + ( 2/10 + 8/10) + ( 3/10 + 7/10) + ( 4/10 + 6/10) + 5/10]
A = 1/2 - 1 + ( 1 + 1/2) - 2 + ( 2 + 1/2) - 3 + ( 3 + 1/2) - 4 + ( 4 + 1/2)
A = 1/2 + 1/2 + 1/2 + 1/2 + 1/2
A = 1/2 × 5 = 5/2
Bài 3 : a) Tính
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) Tính :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+\frac{1}{2011}}\)
Tính A = \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{10}}\)
\(A=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{10}}\)
\(2A=2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^9}\)
\(2A+A=\left(2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^9}\right)+\left(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^{10}}\right)\)
\(3A=2-\frac{1}{2^{10}}\)
\(3A=\frac{2^{11}-1}{2^{10}}\)
\(A=\frac{2^{11}-1}{2^{10}.3}\)
Tính D = \(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+...-\frac{1}{2^{58}}\)
\(\frac{1}{2^3}\)D= \(\frac{1}{2^4}-\frac{1}{2^7}+\frac{1}{2^{10}}-\frac{1}{2^{13}}+...+\frac{1}{2^{58}}-\frac{1}{2^{61}}\)
D+ \(\frac{1}{2^3}\)D=\(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^7}-\frac{1}{2^{10}}+\frac{1}{2^{10}}+...-\frac{1}{2^{58}}+\frac{1}{2^{58}}-\frac{1}{2^{61}}\)
\(\frac{9}{8}\)D= \(\frac{1}{2}-\frac{1}{2^{61}}\)=> D= \(\frac{\frac{1}{2}-\frac{1}{2^{61}}}{\frac{9}{8}}\)