Câu 1: Tìm x biết
1,\(5^2\times7^3\times11^2\times x-5^2\times7^2\times11^4=0\)
2,\(5^2\times7^3\times11^2\times x+5^3\times7^2\times11=0\)
Tính (theo mẫu).
Mẫu: \(\dfrac{2\times3\times7}{5\times7\times3}=\dfrac{2}{5}\)
a) \(\dfrac{12\times11\times13}{13\times17\times11}\) b) \(\dfrac{49\times16\times31}{16\times49\times37}\)
a) = \(\dfrac{12}{17}\)
b) = \(\dfrac{31}{37}\)
TÍNH NHANH:\(\frac{1}{1\times3\times5}+\frac{1}{2\times5\times8}+\frac{1}{3\times5\times7}+\frac{1}{5\times8\times11}+\frac{1}{5\times7\times9}+\frac{1}{8\times11\times14}+...+\frac{1}{995\times997\times999}+\frac{1}{1493\times1496\times1499}\)
Đây là tổng của 2 dãy:
\(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+...+\frac{1}{995\times997\times999}\)(1)
và
\(\frac{1}{2\times5\times8}+\frac{1}{5\times8\times11}+\frac{1}{8\times11\times14}+...+\frac{1}{1493\times1496\times1499}\)(2)
Dãy số có dạng là tích 3 thừa số, trong đó thừa số thứ 3 hơn thừa số thứ nhất n đơn vị và 2 thừa số cuối của phân số trước là 2 thừa số đầu của phân số sau. Để tính dãy kiểu này cần đưa tử số về hiệu của thừa số thứ 3 và thừa số thứ nhất (hiệu = n):
Vậy nhân dãy thứ nhất với 4:
\(=\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}+\frac{4}{5\times7\times9}+...+\frac{4}{995\times997\times999}\)
Nhận xét:
\(\frac{4}{1\times3\times5}=\frac{5-1}{1\times3\times5}=\frac{5}{1\times3\times5}-\frac{1}{1\times3\times5}=\frac{1}{1\times3}-\frac{1}{3\times5}\)\(\frac{4}{3\times5\times7}=\frac{7-3}{3\times5\times7}=\frac{7}{3\times5\times7}-\frac{3}{3\times5\times7}=\frac{1}{3\times5}-\frac{1}{5\times7}\)Vậy 4 lần tổng dãy 1 là:
\(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{995\times997}-\frac{1}{997\times999}\)
\(\frac{1}{1\times3}-\frac{1}{997\times999}\)
Suy ra tổng dãy (1) là \(\left(\frac{1}{3}-\frac{1}{997\times999}\right)\times\frac{1}{4}\)
Làm tương tự tính được tổng dãy (2) là: \(\left(\frac{1}{2\times5}-\frac{1}{1496\times1499}\right)\times\frac{1}{6}\)
Cộng 2 kết quả lại được tổng cần tính
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{\left(3n-1\right)\times\left(3n+2\right)}=\frac{1}{6n+4}\)
b.\(\frac{5}{3\times7}+\frac{5}{7\times11}+\frac{5}{11\times15}+...+\frac{5}{\left(4n-1\right)\times\left(4n+3\right)}=\frac{5n}{4n+3}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
b)\(VT=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left[\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{4n+3}\right]=\frac{5}{4}\cdot\left[\frac{4n+3}{3\left(4n+3\right)}-\frac{3}{3\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{4n+3-3}{12n+9}\right]\)\(=\frac{5}{4}\cdot\frac{4n}{12n+9}=\frac{5n}{12n+9}\)
tính nhanh
\(\dfrac{10}{11}\):\(\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\right)\)
\(\dfrac{10}{11}:\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\right)\)
\(=\dfrac{10}{11}:\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=\dfrac{10}{11}:\left(\dfrac{1}{3}-\dfrac{1}{11}\right)\)
\(=\dfrac{10}{11}:\dfrac{8}{33}\)
\(=\dfrac{10}{11}\times\dfrac{33}{8}\)
\(=5\times\dfrac{3}{4}\)
\(=\dfrac{15}{4}\)
\(10101\times\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3\times7\times11\times13\times37}\right)\)
Ta có : (ghi đầu bài)
=10101*(5/111111+5/222222-4/111111)
=10101*5/111111+10101*5/222222-10101*4/111111 (nhân phân phối)
=5/11+5/22-4/11
=10/22+5/22-8/22
=7/22
Chúc May MẮn
a,\(\frac{2^3\times3^4}{2^2\times3^2\times5};\frac{2^4\times5^2\times11^2\times7}{2^3\times5^3\times7^2\times11}\)
b,\(\frac{121\times75\times130\times169}{39\times60\times11\times198}\)
c,\(\frac{1998\times1990+3978}{1992\times1991-3984}\)
Bài trên là bài rút gọn các phân số sau
\(\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}\right)\times y=\frac{2}{3}\)
Tìm y
\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)
\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)
Tính nhanh
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Tính: \(10101\times\left(\frac{5}{11111}+\frac{5}{22222}-\frac{4}{3\times7\times11\times13\times17}\right)\)
ko có cách nào tính ra đâu chỉ có thể bấm máy tính thôi