tìm giá trị nhỏ nhất của biểu thức :
B= -x^2 + 2xy -4y^2 + 2x + 10y -8
Tìm giá trị lớn nhất của biểu thức:
M=-x2+2xy-4y+2x+10y-8
\(6M=-6x^2+12xy-24y^2+12x+60y-48\)
\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)
\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)
\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)
Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2
Chúc bạn học tốt :>
Tìm giá trị lớn nhất của biểu thức
\(A= -x^2+2xy-4y^2+2x+10y-3\)
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)
\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)
Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Tìm giá trị lớn nhất của biểu thức A= -x^2 + 2xy - 4y^2 + 2x + 10y - 3
Lời giải:
$-A=x^2-2xy+4y^2-2x-10y+3$
$=(x^2-2xy+y^2)+3y^2-2x-10y+3$
$=(x-y)^2-2(x-y)+3y^2-12y+3$
$=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-10$
$=(x-y+1)^2+3(y-2)^2-10\geq 0+0-10=-10$
$\Rightarrow A\leq 10$
Vậy $A_{\max}=10$. Giá trị này đạt tại $x-y+1=y-2=0$
$\Leftrightarrow y=2; x=1$
Tìm giá trị lớn nhất của biểu thức sau :
M=x2+2xy-4y2+2x+10y-8
Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8
Tìm giá trị lớn nhất của các biểu thức sau
A= \(-x^2\)+2xy\(-4y^2\) +2x +10y -3
B=\(-4x^2\)\(-5y^2\)+8xy+10y+12
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)
\(B=-4x^2-5y^2+8xy+10y+12\)
\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)
\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)
\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)
=>x=y=5
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
Tìm giá trị lớn nhất của biểu thức M=-x2+2xy-4y2+2x+10y-8
Tìm giá trị nhỏ nhất của 2x^2+9y^2 -6xy-6x-12y+2004
Tìm giá trị lớn nhất của
a) -5-(x-1)(x+2
b) -x^2+2xy-4y^2+2x+10y-8
Tìm x,y sao cho:
A= 2x^2+9y^2-6xy-6x-12y+2005 có giá trị nhỏ nhất
B= -x^2+2xy-4y^2+2x+10y-8 có giá trị lớn nhất