Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngô Thanh Trang
Xem chi tiết
Phạm Tuấn Kiệt
8 tháng 11 2015 lúc 13:05

Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:

b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
d Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
d Ư(2) d {1,2}
d = 2 không là ước số của số lẻ 2n+3 d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 12 2017 lúc 12:30

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

Võ Trọng Huy Hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2018 lúc 11:39

Gọi d là UCLN của 3n + 1 và 4n + 1

=> 3n+1 ⋮ d => 12n+4d

4n+1d => 12n+3d

=> (12n+4) – (12n+3)d

=> 1d => d = 1

Vậy 3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 7 2018 lúc 7:41

Nguyễn Hoàng Tú
Xem chi tiết
Hà_Bảo_Trâm
24 tháng 7 2016 lúc 7:35

ta có

gọi d là ƯCLN (3n+1 ; 4n+1)

suy ra 3n+1 chia hết cho d

4n+1 chia hết cho d

thì 12n +4 chia hết cho d

12n+3 chia hết cho d

suy ra 12n+4 -12n+3 chia hết cho d

suy ra 1 chia hết cho d

suy ra d =1

vậy 2 số này là 2 số nguyên tố cùng nhau

{Hell}mr monster
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2022 lúc 19:26

Gọi d=UCLN(3n+2;4n+3)

=>4(3n+2)-3(4n+3)\(⋮d\)

\(\Leftrightarrow12n+8-12n-9⋮d\)

\(\Leftrightarrow d=1\)

=>3n+2 và 4n+3 là hai số nguyên tố cùng nhau

Công Chúa Họ NGuyễn
Xem chi tiết
Không Tên
22 tháng 12 2017 lúc 19:29

Gọi  (3n + 1; 4n + 1) = d

Ta có:  3n + 1 \(⋮d\)

            4n + 1 \(⋮d\)

Xét hiệu:  4(3n + 1) - 3(4n + 1) \(⋮d\)

\(\Leftrightarrow\)12n + 4 - 12n - 3  \(⋮d\)

\(\Leftrightarrow\)1  \(⋮d\)   \(\Leftrightarrow\)d = 1

Vậy   3n + 1  và  4n + 1   là 2 số nguyên tố cùng nhau  \(\forall n\) \(\in N\)\(\ne0\))

Kaitou Kid
22 tháng 12 2017 lúc 19:30

Gọi ƯCLN(3n + 1, 4n + 1) = d ( d thuộc N, d khác 0 )

=> 3n + 1 chia hết cho d; 4n + 1 chia hết cho d

=> (3n + 1) . 4 chia hết cho d; (4n+1) . 3 chia hết cho d

=> 12n + 4 chia hết cho d; 12n + 3 chia hết cho d

=>[ (12n + 4 ) - ( 12n + 3 ) ] chia hết cho d

=> 1 chia hết cho d

=>d thuộc Ư(1)

=> d = 1

Vậy với mọi n thuộc N và n khác 0 thì 3n + 1; 4n + 1 nguyên tố cùng nhau

Lạc Dao Dao
22 tháng 12 2017 lúc 19:34

Gọi ƯCLN(3n+1;4n+1)=d

Suy ra : 3n+1 chia hết cho d =>4.(3n+1) chia hết cho d Hay 12n+4 chia hết cho d

             4n+1 chia hết cho d => 3.(4n+1) chia hết cho d Hay 12n+3 chia hết cho d 

Nên (12n+4)-(12n+3) chia hết cho d 

Hay  chia hết cho d =>d=1

 Vậy với mọi số tự nhiên n khác 0 thì số 3n+1 và số 4n+1 là 2 số nguyên tố cùng nhau

NHỚ K CHO MÌNH NHA 

CHÚC BẠN HỌC GIỎI !

BÙI BẢO KHÁNH
Xem chi tiết
Lê Song Phương
20 tháng 10 2023 lúc 20:40

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.