cho tam giác MNP vuông tại M , MH là đường cao
a)NH=4cm, PH=9cm
tính MN, MP, MH và S NPH
b)I là TĐ của NP. tính MI
c)MD là tia phân giác của góc NMP
tính ND, PD và S MHD
Cho tam giác MNP cân tại M có M<90°,từ M kẻ MH vuông góc với NP(H thuộc NP)
a) chứng minh tam giác MNH = tam giác MPH
b) tính độ dài cạnh MN, biết MH = 4cm và NH = 3cm
c) kẻ ND vuông góc với MP tại D,PE vuông góc với MN tại E. Gọi I là giao điểm của ND và PE.chứng minh MI là phân giác của góc NMP
d) chứng minh 3 điểm M,I,H thẳng hàng
Ghi đầy đủ mà nó hiện lên có 1 khúc,khóc ẻ
Cho tam giác MNP vuông tại M, MH vuông góc với NP (H thuộc NP) ,MN = 3; MB = 4. Tia phân giác ND của góc MNP cắt MP tại D ; MH tại K . a) tính DM; DP b) chứng minh : KH/KM = DM/DP c) Chứng minh : NH×ND=NM×NK và Tam giác MDK cân .
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)
\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)
\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)
\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)
b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)
△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)
c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\); \(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)
\(\Rightarrow\)△MDK cân tại M
Cho tam giác MNP vuông tại M, đường phân giác ND(D thuộc MP). Kẻ ME vuông góc với ND(E thuộc ND), ME cắt NP tại K. Chứng minh:
a.Tam giác MNE = Tam giác KNE
b. DK vuông góc NP
c. Kẻ MH vuông góc với NP(H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có
NE chung
góc MNE=góc KNE
=>ΔMNE=ΔKNE
b: Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔNMD=ΔNKD
=>góc NKD=90 độ
=>DK vuông góc NP
Cho tam giác MNP vuông tại M có MN=6cm, MP=8cm, đường cao MH, phân giác ND
a) Tính độ dài các đoạn thẳng: NP;MD;DP
b) Gọi I là giao điểm của MH và ND. CM:MN.NI=ND.HN
c) Chứng minh : tam giác MID là tam giác cân
Ai làm đc mình xin tặng quà ạ
cho tam giác MNP vuông tại M, đường phân giác ND( D thuộc MP). Kẻ ME vuông góc với ND (E thuộc ND). ME cắt NP tại K. Chứng minh a) DK vuông góc với NP b) Kẻ MH vuông góc với NP( H thuộc NP). Gọi I là giao điểm của MH và ND. Chứng minh KI song song với MP
a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP
a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔMNP có MQ là phân giác
nên QN/MN=QP/MP
=>QN/3=QP/4=(QN+QP)/(3+4)=20/7
=>QN=60/7cm; QP=80/7cm
b: QE//MN
=>PQ/PN=EQ/MN
=>EQ/12=80/7:20=4/7
=>EQ=48/7cm
c: MH=12*16/20=9,6cm
\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)
Cho tam giác MNP vuông tại M,đường phân giác ND của góc MNP .Kẻ ME vuông góc với ND tại E,ME cắt NP tại K.Kẻ MH vuông góc với NP tại H,MH cắt ND tại I
a) CM tam giác MNK cân
b)CM tam giác NMD=tam giác NKD.Từ đó suy ra DK vuông góc NP và tam giác MDK cân
c)Chứng minh MK là tia phân giác của góc HMP
d)CM IK song song MP
MÌnh cần gấp lắm bài này lớp 7 nhé
Cho tam giác MNP cân tại M, MN = 5cm, NP= 4cm. Kẻ MH vuông góc NP tại H
a) Chứng minh và H là trung điểm của NP
b) Tính MH (làm trong đến chữ số thập phân thứ nhất)
c) Kẻ đường thẳng d vuông góc với MN tại N, d cắt đường thẳng MH tại I. Chứng minh: tam giác MNI=MPI
d) Kẻ NE vuông góc với MP tại E. Chứng minh NP là tia phân giác của góc E
a: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
b: NH=PH=2cm
=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)
c: Xét ΔMNI và ΔMPI có
MN=MP
góc NMI=góc PMI
MI chung
=>ΔMNI=ΔMPI
cho tam giác MNP vuông tại M có MH là đường cao biết NP=5cm NH=1.8 cm Tính độ dài MN MH và tính góc N và P b, qua P vẽ đường cao song song với MN cắt MH tại D chứng minh MH . MD = PH . PN
b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:
\(MH\cdot MD=MP^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(PH\cdot PN=MP^2\left(2\right)\)
Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)