cho tam giác Abc cân tại A, M là trung điểm của BC
a) C/m tam giác ABM= tam giác ACM
b) Từ M kẻ MH vuông góc AB và MK vuông góc AC. C/m BH=CK
cho tam giác ABC cân tại A .Gọi M là trung điểm của bc .Kẻ đường cao BP .từ M ,kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
a, chứng minh tam giác ABM = tam giác ACM
b, chứng minh BH =CK
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
Cho tam giác ABC cân tại A và M là trung điểm BC. CMR:
a) Tam giác ABM = Tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. CMR: BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. CMR: tam giác IBM cân
cho tam giác ABC cân tại A .goim M cân tại A là trung điểm của BC
a)cm tam giác ABM= tam giác ACM
b)cm AM vuông góc BC
c)kẻ MH vuông góc AB tại H
MK vuông góc AC tại K
cm MA=MB
d)cm tam giác AHK cân
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
Cho tam giác ABC cân tại A. M là trung điểm của BC. Chứng minh rằng:
a) tam giác ABM = tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. Chứng minh rằng tam giác IBM cân
Cho tam giác ABC cân tại A. M là trung điểm của BC. Chứng minh rằng:
a) tam giác ABM = tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. Chứng minh rằng tam giác IBM cân
Cho tam giác ABC cân tại A. M là trung điểm của BC. Chứng minh rằng:
a) tam giác ABM = tam giác ACM
b) Từ M vẽ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng BH = CK
c) Từ B kẻ BP vuông góc với AC, BP cắt MH tại I. Chứng minh rằng tam giác IBM cân
Xét tam giác ABM và tam giác ACM có
AB = AC (gt)
AM là cạnh chung
BM = MC ( gt )
\(\Rightarrow\) Tam giác ABM bằng tam giác ACM ( c.c.c)
cho tam giác abc cân tại A từ A vẽ AM vuông góc BC tại M. Từ M vẽ MH vuông góc AB tại H MK vuông góc AC tại K
a) C/M:L tam giác ABM= tam giác ACM
b) C/M: tam giác AHM= tam giác AKM
c) C/M: AHK cân và HK//BC
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó:ΔABM=ΔACM
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
c: Ta có: ΔAHM=ΔAKM
nên AH=AK
hay ΔAHK cân tại A
Xét ΔABC có AH/AB=AK/AC
nên HK//BC
Cho tam giác ABC. Gọi M là trung điểm của cạnh BC
a) C.minh : tam giác ABM = tam giác ACM
b) Từ M vẽ MH vung góc AB và MK vuông góc AC. C.minh BH = CK
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I. C.minh tang giác IBM cân