Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Nguyên
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
Đào Thu Hiền
Xem chi tiết
Xuân Khang Phan
Xem chi tiết
♥ღ๖ۣۜ  Kirashi Ruby ๖ۣۜღ...
21 tháng 4 2022 lúc 22:39

\(9x^2-1+\left(3x-1\right).\left(x+2\right)=0\)

\(\Leftrightarrow9x^2-1+3x^2+6x-x-2=0\)

\(\Leftrightarrow9x^2+3x^2+6x-x=0+1+2\)

\(\Leftrightarrow12x^2+5x=3\)

\(\Leftrightarrow12x^2+5x-3=0\)

\(\Leftrightarrow12x^2-4x+9x-3=0\)

\(\Leftrightarrow4x\left(3x-1\right)+3\left(3x-1\right)\)

\(\Leftrightarrow\left(4x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{4}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy tập nghiệm phương trình là S = \(\left\{\dfrac{-3}{4};\dfrac{1}{3}\right\}\)

kenin you
Xem chi tiết
ILoveMath
10 tháng 10 2021 lúc 10:29

tách nhỏ câu hỏi ra

Nguyễn Huyền
10 tháng 10 2021 lúc 10:35

1. -3(-x+3)

= 3x - 6

2. -5x3 (-3x + 5)

= 15x4 - 25x3

3. -2x (-2x - 6)

= 4x2 + 12x

 

Hoài Nam Nguyễn
Xem chi tiết
Anh Quỳnh
15 tháng 3 2016 lúc 10:53

ĐK : \(\begin{cases}x\ge\frac{-1}{3}\\y\le5\end{cases}\)

\(\sqrt{5x^2+3y+1}+1-4x=0\)

\(\Leftrightarrow\begin{cases}x\ge\frac{1}{4}\\5x^2+3y+1=16x^2-8x+1\left(1\right)\end{cases}\)

(1) \(\Leftrightarrow11x^2-8x-3y=0\left(2\right)\)

Đặt \(\begin{cases}\sqrt{3x+1}=a\left(a\ge0\right)\\\sqrt{5-y}=b\left(b\ge0\right)\end{cases}\) \(\Rightarrow\begin{cases}3x+2=a^2+1\\6-y=b^2+1\end{cases}\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\\ \Leftrightarrow a^3-b^3+a-b=0\\ \Leftrightarrow\left(a-b\right)\left(a^2-ab+b^2+1\right)=0\\ \Leftrightarrow a-b=0\left(a^2-ab+b^2+1>0\right)\\\Leftrightarrow a=b\\ \)

\(\Rightarrow\sqrt{3x+1}=\sqrt{5-y}\\ \Leftrightarrow3x+1=5-y\\ \Leftrightarrow y=4-3x\left(3\right)\)

Từ (2) và (3)

 \(\Rightarrow11x^2-8x-3\left(4-3x\right)=0\\ \Leftrightarrow11x^2+x-12=0\\ \Leftrightarrow x=1\left(TM\right);x=\frac{-12}{11}\left(loại\right)\\ \Rightarrow y=1\left(TM\right)\)

Vậy S = \(\left\{\left(1;1\right)\right\}\)

Thỏ Ngọc
14 tháng 3 2016 lúc 19:05

no biết

Lê Phương Thủy
15 tháng 3 2016 lúc 17:12

Mình mới lớp 6 Sorry

sakura
Xem chi tiết
Minh Quan Ho
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 18:29

Ta có: \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right)\)

\(\Leftrightarrow\dfrac{x^2-9}{3}+\dfrac{6}{3}=\dfrac{3x\left(1-x\right)}{3}\)

\(\Leftrightarrow x^2-9+6=3x-3x^2\)

\(\Leftrightarrow x^2-3-3x+3x^2=0\)

\(\Leftrightarrow4x^2-3x-3=0\)

\(\Delta=9-4\cdot4\cdot\left(-3\right)=9+48=57\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{57}}{8}\\x_2=\dfrac{3+\sqrt{57}}{8}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3-\sqrt{57}}{8};\dfrac{3+\sqrt{57}}{8}\right\}\)

Nguyễn Khắc Duy
Xem chi tiết
Minh Nguyen
29 tháng 1 2020 lúc 21:23

Tớ học ngu nên chỉ biết cách nhân ra rồi rút gọn chứ không biết cách nào ngắn hơn :)) Hơi dài dòng nên phân tích từng vế 1 nhé :D

2/ \(\left(2x^2+5x-204\right)^2+4\left(x^2-5x-206\right)=4\left(2x^2+5x-204\right)\left(x^2-5x-206\right)\)

*****\(VT=\left(2x^2+5x-204\right)^2+4\left(x^2-5x-206\right)^2\)

\(=4x^4+25x^2+41616+20x^3-816x^2-2040x+4\left(x^4-387x^2+42436-10x^3+2060x\right)\)

\(=4x^2+25x^2+41616+20x^3-816x^2-2040x+4x^2-1548x^2+169744-40x^3+8240x\)

\(=8x^4-1523x^2+6200x+211360\)

*****\(VP=\left(8x^2+20x-816\right)\left(x^2-5x-206\right)\)

\(=8x^4-40x^3-1648x^2-100x^2-4120x-816x^2+4080x+168096\)

\(=8x^4-1748x^2-40x+168096\)

\(\Rightarrow8x^4-1523x^2+6200x+211360=8x^4-1748x^2-40x+168096\)

\(\Leftrightarrow-1523x^2+6200x+211360+1748x^2-40x+168096=0\)

\(\Leftrightarrow255x^2+43264+6240x=0\)

\(\Leftrightarrow\left(15x+208\right)^2=0\)

\(\Leftrightarrow15x+208=0\)

\(\Leftrightarrow x=-\frac{208}{15}\)

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
8 tháng 3 2020 lúc 8:55

+ Ta có: \(x^4-5x^3+6x^2+5x+1=0\)

        \(\Rightarrow x^2-5x+6+\frac{5}{x}+\frac{1}{x^2}=0\)( chia cả hai vế cho \(x^2\))

       \(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-\left(5x-\frac{5}{x}\right)+6=0\)

      \(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-5.\left(x-\frac{1}{x}\right)+6=0\)( *** )

- Đặt  \(x-\frac{1}{x}=a\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=a^2+2\)

- Thay  \(a=x-\frac{1}{x};\)\(a^2+2=x^2+\frac{1}{x^2}\)vào ( *** )

- Ta có: \(a^2+2-5a+6=0\)

     \(\Leftrightarrow a^2-5a+8=0\)

     \(\Leftrightarrow4a^2-20a+32=0\)

     \(\Leftrightarrow\left(4a^2-20a+25\right)+7=0\)

     \(\Leftrightarrow\left(2a-5\right)^2+7=0\)

- Ta lại có: \(\hept{\begin{cases}\left(2a-5\right)^2\ge0\forall a\\7>0\end{cases}}\Rightarrow \left(2a-5\right)^2+7\ge7>0\)mà \(\left(2a-5\right)^2+7=0\)

\(\Rightarrow\left(2a-5\right)^2+7\)( vô nghiệm ) \(\Rightarrow\)\(x^4-5x^3+6x^2+5x+1=0\)( vô nghiệm )

Vậy \(S=\left\{\varnothing\right\}\)

+ Ta có: \(\left(2x^2+5x-204\right)^2+4.\left(x^2-5x-206\right)=4.\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)( ** )

- Đặt \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)\(\Rightarrow\)\(a.b=\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)

- Thay \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)\(\Rightarrow\)\(a.b=\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)

vào ( ** )

- Ta có: \(a^2+4b^2=4ab\)

      \(\Leftrightarrow a^2-4ab+4b^2=0\)

      \(\Leftrightarrow\left(a-2b\right)^2=0\)

      \(\Leftrightarrow a-2b=0\)

      \(\Leftrightarrow a=2b\)( * )

- Thay  \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)vào ( * )

- Ta lại có: \(2x^2+5x-204=2.\left(x^2-5x-206\right)\)

       \(\Leftrightarrow2x^2+5x-204=2x^2-10x-412\)

      \(\Leftrightarrow\left(2x^2-2x^2\right)+\left(5x+10x\right)=-\left(412-204\right)\)

      \(\Leftrightarrow15x=-208\)

      \(\Leftrightarrow x=-\frac{208}{15} \left(TM\right)\)

Vậy \(S=\left\{-\frac{208}{15}\right\}\)

Khách vãng lai đã xóa