Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Vũ Thảo Nguyên
Xem chi tiết
nguyễn bảo an
Xem chi tiết
Kiều Vũ Linh
26 tháng 9 2023 lúc 20:47

S = 1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸

S = 2S - S

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸) - (1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷)

= 2²⁰¹⁸ - 1

Ngô Hải Nam
26 tháng 9 2023 lúc 20:49

`S=1+2+2^2+2^3+...+2^2017`

`2S=2+2^2+2^3+2^4+...+2^2018`

`2S-S=(2+2^2+2^3+2^4+...+2^2018)-(1+2+2^2+2^3+...+2^2017)`

`S=2^2018 -1`

『Kuroba ム Tsuki Ryoo...
26 tháng 9 2023 lúc 20:51

`#3107`

\(S=1+2+2^2+2^3+...+2^{2017}\\ 2S=2+2^3+2^4+...+2^{2018}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)

\(S=2+2^2+2^3+2^4+...+2^{2018}-1-2-2^2-2^3-...2^{2017}\)

\(S=2^{2018}-1\)

Vậy, \(S=2^{2018}-1.\)

Kinomoto Sakura
Xem chi tiết
Đức Nguyễn Ngọc
5 tháng 5 2016 lúc 11:10

Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

      \(\Rightarrow\) A < \(1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)

      \(\Rightarrow\) A < \(1+\left(1-\frac{1}{50}\right)\)

      \(\Rightarrow\) A < 1 + 49/50

Mà 1+49/50 < 2 nên A < 1+49/50 < 2

\(\Rightarrow\) A < 2

Đặng Trần Hà
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
Pham Van Hung
9 tháng 9 2018 lúc 7:31

    \(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)

\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)

\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)

\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)

\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)

Ngô Chí Thành
Xem chi tiết
đỗ thị lan anh
21 tháng 8 2016 lúc 22:02

b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

   3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3A-A=\(1-\frac{1}{3^{99}}\)

   2A=\(1-\frac{1}{3^{99}}\)

vì 2A<1

=> A<\(\frac{1}{2}\)

Nguyễn Quỳnh Thơ
Xem chi tiết
Nguyễn Duy Đạt
20 tháng 8 2017 lúc 9:49

a)    4\(^{2019}\)+ 1 = 4\(^{2016}\). 4\(^3\)+ 1 = ...6    .   64  +   1 = ....4   +   1 = ....5     \(⋮\) 5

(các số tận cùng là 4 khi nâng lũy thừa bậc 4n đều có chữ số tận cùng là 6)

My Nguyễn Thị Trà
20 tháng 8 2017 lúc 9:58

a/ 4^2019 + 1

= (4^2)^1009 x 4 + 1

= (.....6)^1009 x 4 + 1

= .....6 x 4 + 1

= ......4 + 1

= .....5 

Vì 4^2019 + 1 có tận cùng là 5

Suy ra 4^2019 + 1 chia hết cho 5

Vậy 4^2019 + 1 chia hết cho 5

b/ 5^2017 + 1

= ( 5^2 ) ^1008 x 5 + 1

= 25^1008 x 5 + 1

hay = 25.25.25....25 x 5 + 1 ( có tất cả 1008 thừa số 25 ) ......... Tự làm nha!

hằng hồ thị hằng
Xem chi tiết
Akai Haruma
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Akai Haruma
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

Lê Thành Tài
Xem chi tiết