Tìm ước chung
a,n+1 và 2n+5
b,n+3 và 2n+5
c,2n+1 và 3n+7
d,2n+5 và 3n+7
e,5n+6 và 8n+7
tìm ước chung của 2n+1 và 3n+1
tìm ước chung của 5n+6 và 8n+7
Gọi ƯC(2n + 1 và 3n + 1)= d
Ta có :
2n + 1 chia hết cho d => 3(2n + 1 ) chia hết cho d
Hay 6n + 3 chia hết cho d ( 1 )
3n + 1 chia hết cho d => 2(3n + 1 ) chia hết cho d
Hay 6n + 2 chia hết cho d ( 2 )
Từ (1 ) và ( 2 ) => ( 6n + 3 - 6n - 2 ) chia hết cho d
=> 1 chia hết cho d
=> d là ước của 1
=> d thuộc tập hợp ước của 1
=> tập hợp ước chung của 2n + 1 và 3n + 1 là -1 và 1
Gọi d là ước chung của 5n + 6 và 8n + 7
=> d là ước 3n + 1
=> d là ước chung của 5n + 6 và 3n + 1 → d là ước 2n + 5
=> d là ước chung của 3n + 1 và 2n + 5 → d là ước n - 4
=> d là ước chung của 2n + 5 và n - 4 → d là ước của n + 9
=> d là ước chung của n + 9 và n - 4 → d là ước của 13
Vậy tập hợp các ước chung ( không âm ) của 5n + 6 và 8n + 7 = { 1 ; 13 }
Nếu n # 4 + 13 k thì tập hợp ước chung của 5n + 6 và 8n + 7 là 1
B1
a) Tìm ước chung của n+1; 3n+2(n thuộc N)
b) Tìm ước chung của 2n+3 và 3n+4 (n thuộc N)
B2 Biết rằng 2 số 5n+6 và 8n+7 không phải là 2 số nguyên tố cùng nhau. tìm ước chung lớn nhất ( 5n+6; 8n+7) n thuộc N
2 tìm UCLN
a)2n + 1 và 3n + 1 (n thuộc N)
b) 5n + 6 và 8n + 7 ( n thuộc N)
tìm các ƯC của các cặp số sau từ đó suy ra các cặp số nào nguyên tố cùng nhau vs n thuộc N
a) 2n+1 và 3n+1
b) 5n+6 và 8n+7
c)7n+10 và 5n+7
d) n^2+2n+2 và n+1
a) Gọi ƯC cua 2n+1 ; 3n+1 là d
\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)
b) Gọi ƯC cua 5n+6 và 8n+7 là d
\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)
c)7n+10 và 5n+7
Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*
\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)
\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)
Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d
35n+50-35n-49 \(⋮\)d
(35n-35n)+(50-49)\(⋮\)d
0 + 1 \(⋮\)d
1 \(⋮\)d
Vì:1\(⋮\)d nên d\(\in\)Ư(1)
Mà:Ư(1)={1} nên d=1
Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
1)Tìm ước chung của 2 số ab+ba và 33,biết a+b không chia hết cho 3
2)Tìm ước chung của 2 số 2n+1 và 3n+1 với n thuộc các số tự nhiên
3)Biết hai số:5n+6 và 8n+7 với n thuộc các số tự nhiên là 2 số ko nguyên tố cùng nhau.Tìm ước chung của 5n+6 và 8n+7
tìm ước chung của 2n+1 và 3n+1 ( n thuộc N)
tìm ước chung của 5n+6 và 8n+7 ( n thuộc N)
tìm x biết
x + 10 chia hết cho 5
x -18 chia hết cho 6
x + 21 chia hết cho 7
500<x<750
Gọi d là UCLN của 2n+1 và 3n+1
Ta có :
\(2n+1⋮d\)
\(3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Chứng minh rằng với n N thì hai số sau nguyên tố cùng nhau:
a) 5n + 2 và 2n + 1 b) 7n + 10 và 5n + 7 c) 2n + 1 và 2n + 3 c) 3n + 1 và 5n + 2
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)
\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)
d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)
Tìm ƯC của :
a ) 5n +1 và n+3
b) 2n +4 và n+5
c) 3n +2 và 2n +3
d ) 3n -4 và n+1
a) Nếu p là SNT lớn hơn 3 và 2p + 1 cũng là SNT thì 4p + 1 là SNT hay hợp số?
b) Tìm ƯC của hai số 2n + 1 và 3n + 1 ( n \(\in\) N )
c) Tìm tất cả các ước chung của 5n + 6 và 8n + 7
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}