3n+4 va 4n +5 Chứng minh 2 số nguyên tố cùng nhau
Chứng minh rằng : Với mỗi neN thì các số sau là 2 số nguyên tố cùng nhau
a) 3n + 1 va 4n + 1
) 2n + 5 va 3n + 7
Gọi ƯClN (3n+1,4n+1)= d\(\Rightarrow\left(3n+1\right)⋮d\)và\(\left(4n+1\right)⋮d\)
\(\Rightarrow4.\left(3n+1\right)⋮d\)và\(3.\left(4n+1\right)⋮d\Rightarrow4.\left(3n+1\right)-3.\left(4n+1\right)⋮d\)
\(\Rightarrow12n+4-\left(12n+3\right)⋮d\Rightarrow12n+4-12n-3\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow\)3n+1 và 4n+1 là hai nguyên tố cùng nhau
câu còn ại tương tự
chứng minh rằng : 3n + 5 và 4n + 4 là 2 số nguyên tố cùng nhau
Sửa đề: CMR: 3n + 4 và 4n + 5 là hai số nguyên tố cùng nhau
Gọi (3n + 4; 4n + 5) = d
Ta có: \(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Leftrightarrow\left(4n+5\right)-\left(3n+4\right)⋮d\)
Hay \(n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Leftrightarrow3n+3⋮d\)
Suy ra \(\left(3n+4\right)-\left(3n+3\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
Suy ra (3n + 4; 4n + 5) = d = 1 hay 3n + 4 và 4n + 5 nguyên tố cùng nhau. (đpcm)
đề sai rồi em:)
n=3 thì 14 và 16 không ngyên tố cùng nhau nhé!
Với n là số tự nhiên. Chứng minh các cặp số sau nguyên tố cùng nhau
a) 2n + 3 và 3n + 4
b) 3n + 4 và 4n + 5
a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
a) Gọi d là UCLN (2n+3;3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
Vậy 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
b) Gọi d là UCLN(3n+4;4n+5)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\4n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12n+16⋮d\\12n+15⋮d\end{matrix}\right.\)
\(\Rightarrow12n+16-12n-15⋮d\Rightarrow1⋮d\)
Vậy 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
chứng tỏ rằng 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
gọi uoc chung cua 3n + 4 va 4n+5 là x
ta co
3n+4chia het cho x suy ra 12n+16 chia het cho x
4n+5 chia het cho x suy ra 12n+15 chia het cho x
suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1
vay 4n+5 và 3n+4 nguyen to cung nhau
Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)
suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.
Xét 3n+4 chia hết cho d
suy ra 4(3n+4) chia hết cho d
hay 12n+16 chia hết cho d (1)
4n+5chia hết cho d
suy ra 3(4n+5) chia hết cho d
hay 12n+15 chia hết cho d (2)
(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.
1 chia hết cho d
suy ra d=1
suy ra ƯCLN(3n+4,4n+5)=1
Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(3n + 4 , 4n + 5)
Ta có :
\(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}12n+16⋮d\\12n+15⋮d\end{cases}}\)
( 12n + 16 ) - ( 12n + 15 )
= 12n + 16 - 12n - 15
= 1
Vì ƯCLN(3n + 4 , 4n + 5) = 1 nên d chỉ có thể = 1
Vì ƯCLN của hai số nguyên tố cùng nhau luôn luôn = 1
=> 3n + 4 và 4n + 5 là hai số nguyên tố cùng nhau
Học tốt nhrs bạn !
Cho số tự nhiên n,chứng minh rằng 3n + 2 và 4n + 3 là hai số nguyên tố cùng nhau
Gọi d=UCLN(3n+2;4n+3)
=>4(3n+2)-3(4n+3)\(⋮d\)
\(\Leftrightarrow12n+8-12n-9⋮d\)
\(\Leftrightarrow d=1\)
=>3n+2 và 4n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng các số sau nguyên tố cùng nhau ( n thuộc N)
a) 5n+3; 3n+2
b) 4n+3; 6n+4
c) 12n+5; 5n+2
a, Gọi ƯCLN(5n + 3, 3n + 2) = d
Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\)
=> 15n + 10 - (15 n + 9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
b, Gọi ƯCLN(4n + 3, 6n + 4) = d
Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)
=> 12n + 9 - (12n + 8) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
c, Gọi ƯCLN(12n + 5, 5n + 2) = d
Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)
=> 60n + 25 - (60n + 24) chia hết cho d
=> 1 chia hết cho d
=> d = {1;-1}
Vậy...
Gọi d là ƯCLN của 5n + 3 và 3n + 2
Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d
=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d
=> 15n + 10 - 15n - 9 = 1 chia hết cho d
=> d = 1
Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .
Gọi ƯCLN của 5n +3 và 3n +2 là d
Ta có:
\(5n+3⋮d\)\(\Rightarrow15n+9⋮d\)
\(3n+2⋮d\)\(\Rightarrow15n+10⋮d\)
Vây 1 \(⋮d=>d=1\)
Vậy các số trên nguyên tố cùng nhau.
\(b,4n+3;6n+4\)
Gọi ƯCLN của 4n+3 và 6n+4 là d
Ta cs:
\(4n+3⋮d\Rightarrow12n+9⋮d\)
\(6n+4⋮d\Rightarrow12n+8⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy các số trên nguyên tố cùng nhau.
Đề học sinh giỏi cho các bồ nha
Bài 1: 1) Chứng minh rằng hai số tự nhiên liên tiếp nguyên tố cùng nhau.
2) Tìm hai số tự nhiên biết rằng tổng của chúng là 168, ƯCLN của chúng bằng 12.
3) Tìm hai số tự nhiên biết hiệu của chúng là 168, ƯCLN của chúng bằng 56, các số đó trong khoảng từ 600 đến 800.
4) Chứng minh rằng: 3n + 1 và 4n + 1 (n N) là 2 nguyên tố cùng nhau.
5) Biết rằng 4n + 3 và 5n + 2 là hai số không nguyên tố cùng nhau. Tìm ƯCLN (4n + 3, 5n + 2)
mk cx hok bồi nek
sao thấy đề bồi này nó cứ dễ sao ấy