Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn Xuân Phát
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Lê Văn Trường
25 tháng 12 2021 lúc 20:18

đúng rùi

Khách vãng lai đã xóa
Lê Thị Nhật Tiên
Xem chi tiết
Phạm Thị Mai Anh
23 tháng 7 2020 lúc 19:54

hơi vô lý

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
23 tháng 7 2020 lúc 20:15

Trả lời:

1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)

                          \(=3^{60}-3^{56}\)

                          \(=3^{55}.\left(3^5-3\right)\)

                          \(=3^{55}.\left(243-3\right)\)

                         \(=3^{55}\times240\)\(⋮240\)

Vậy \(27^{20}-3^{56}\)chia hết cho 240

2, Ta có: \(3a+7b⋮19\)

\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)

\(\Leftrightarrow6a+14b⋮19\)

\(\Leftrightarrow6a+33b-19b⋮19\)

\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)

Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)

Vậy \(2a+11b\)chia hết cho 19

Khách vãng lai đã xóa
Trần Thị Hoài Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2022 lúc 22:16

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

VIP(NGHÈO)
Xem chi tiết
Trần Minh Hưng
28 tháng 10 2016 lúc 20:27

Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)

Ta có:

\(A=1+5+5^2+...+5^{2013}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)

\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)

\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)

\(31⋮31\)

\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)

hay\(A⋮31\) (đpcm)

Nguyễn Thị Bảo Yến
Xem chi tiết
Dương No Pro
5 tháng 11 2020 lúc 20:01

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

Khách vãng lai đã xóa
Nguyễn thị thu trang
Xem chi tiết
Celina
Xem chi tiết
KAl(SO4)2·12H2O
24 tháng 11 2017 lúc 20:09

 9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y) 
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17 
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17

Nguyễn Anh Quân
24 tháng 11 2017 lúc 20:10

Nếu 2x+3y chia hết cho 17

=> 13.(2x+3y) chia hết cho 17

Hay 26x + 39 y chia hết cho 17

Mà 17x và 34 y đều chia hết cho 17

=> 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17

Nếu 9x+5y chia hết cho 17

Mà 17x và 34y đều chia hết cho 17

=> 9x+5y+17x+34y chia hết cho 17

=> 26x+39y chia hết cho 17

=> 13.(2x+3y) chia hết cho 17

=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )

k mk nha

Nguyễn Minh Hiếu
24 tháng 11 2017 lúc 20:22
Ta có: 4.(2x+3y)+(9x+5y)=17x+17y chia hết cho 17. Vì2x+3y chia hết cho 17=>4.(2x+3y)chia hết cho 17=> 9x+5y chia hết cho 17
Vũ Vân Anh
Xem chi tiết
Xem chi tiết
Hoàng Thanh Huyền
2 tháng 9 2019 lúc 17:23

Số phần tử của A là: (33-26):1+1=8 (số hạng)

vậy A= (33+26).8/2=236

 Bạch Dương
2 tháng 9 2019 lúc 17:24

       [Giải:]

= (26 + 33) + (27 + 32) + (28 + 31) +(29 + 30)

= 59 + 59 + 59 + 59

= 59 . 4

= 236

           [ Hoq chắc ]

T༶O༶F༶U༶U༶
2 tháng 9 2019 lúc 17:25

A= 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33

A = ( 26 + 33 ) +( 27 + 32 ) + ( 28 + 31 ) + ( 29 + 30 ) 

A = 59 + 59 + 59 + 59 

A = 59 x 4

A = 236

~ Hok tốt ~