Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn trọng đức
Xem chi tiết
Đức Thành Mai
Xem chi tiết
Kiều Vũ Linh
5 tháng 5 2023 lúc 17:20

Em xem lại ghi đề đã chính xác chưa nhé!

Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 14:51

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BA/BH=BC/BA=10/6=5/3

=>EA/EH=5/3

=>AE=5/3EH

Đào Ngọc Trí
Xem chi tiết
Đào Ngọc Trí
31 tháng 3 2023 lúc 20:11

giúp mình với các bạn mình đang cần gấp ạ

 

Nguyễn Lê Phước Thịnh
31 tháng 3 2023 lúc 20:13

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

CD là phângíac

=>AD/AC=DB/CB

=>AD/3=DB/5=(AD+DB)/(3+5)=8/8=1

=>AD=3cm; BD=5cm

Kii
Xem chi tiết
Onii Chan
23 tháng 4 2021 lúc 19:55

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

Khách vãng lai đã xóa
Nguyễn Ngọc Ánh
Xem chi tiết
LovE _ Khánh Ly_ LovE
Xem chi tiết
thắng
3 tháng 4 2021 lúc 20:23

answer-reply-image

mk trả 

lời rồi

k mk nhé

Khách vãng lai đã xóa
Phan thị cẩm nhung
Xem chi tiết
Chi Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 13:37

1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)

 

nguyễn thị thanh kiều
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 14:57

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

3: Xét ΔBAC có BK là đường phân giác

nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)

mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)

Xét ΔAHC vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\)

Do đó: ΔAHC\(\sim\)ΔBHA

Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)

=>BH/AH=AB/AC

hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)

hay \(AK\cdot AC=AH\cdot KC\)