Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Huỳnh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 21:23

\(P=\dfrac{-2sin5x.sinx-sinx}{2sin5x.cosx+cosx}=\dfrac{-sinx\left(2sin5x+1\right)}{cosx\left(2sin5x+1\right)}=-tanx\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 11 2018 lúc 7:59

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2019 lúc 17:05

Chọn C.

Ta có

C = [ ( sin2x + cos2x) – sin2cos2x]2 - [ ( sin4x + cos4x) 2 - 2sin4x.cos4x]

= 2[ 1-sin2x.cos2x]2 - [ ( sin2x + cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x

= 2[ 1-sin2x.cos2x]2 - [1-sin2x.cos2x]2 + 2sin4x.cos4x

= 2( 1 - 2sin2x.cos2x + sin4x.cos4x)- ( 1 - 4sin2xcos2x + 4sin4x.cos4x) + 2sin4x.cos4x

= 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 7 2018 lúc 11:37

Chọn C.

Ta có: C = 2( sin4x + cos4x + sin2x.cos2x) 2 - ( sin8x + cos8x)

= 2 [ (sin2x + cos2x) 2 - sin2x.cos2x]2 - [ (sin4x + cos4x)2 - 2sin4x.cos4x]

= 2[ 1 - sin2x.cos2x]2 - [ (sin2x+ cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x

= 2[ 1- sin2x.cos2x]2 - [ 1 - 2sin2x.cos2x]2  + 2sin4x.cos4x

= 2( 1 - 2sin2xcos2x+ sin4x.cos4x) –( 1- 4sin2xcos2x+ 4sin4xcos4x) + 2sin4x.cos4x

=  1.

Trần Linh Anh
Xem chi tiết
Trang Hà
9 tháng 8 2019 lúc 13:26

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

Trang Hà
9 tháng 8 2019 lúc 13:28

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)

Trang Hà
9 tháng 8 2019 lúc 13:32

\(G=\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}=\frac{-2sin4xsin2x-sin4x}{-2sin4xsin2x+sin4x}\)

\(G=\frac{-sin4x\left(2sin2x+1\right)}{-sin4x\left(2sin2x-1\right)}=\frac{2sin2x+1}{2sin2x-1}\)

Tường Nguyễn Thế
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2019 lúc 23:36

\(A=\frac{1}{2}\left(\frac{sin^2x}{cos^2x}-1\right)\frac{cosx}{sinx}+cos4x.cot2x+sin4x\)

\(A=\frac{-1}{2}\left(\frac{cos^2x-sin^2x}{cos^2x}\right)\frac{cosx}{sinx}+cos4x.cot2x+sin4x\)

\(A=\frac{-cos2x}{2cosx.sinx}+cos4x.cot2x+sin4x\)

\(A=-cot2x+cos4x.cot2x+sin4x\)

\(A=cot2x\left(cos4x-1\right)+sin4x\)

\(A=\frac{cos2x}{sin2x}.\left(1-2sin^22x-1\right)+sin4x\)

\(A=\frac{-2cos2x.sin^22x}{sin2x}+sin4x\)

\(A=-sin4x+sin4x=0\)

Ryoji
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2019 lúc 15:37

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

nguyễn hoàng lê thi
Xem chi tiết
Mushroom
14 tháng 6 2020 lúc 23:13

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

Suẩn Khẩm
Xem chi tiết
Hoàng Tử Hà
23 tháng 2 2021 lúc 14:29

1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)

2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)

3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)