Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Quế Ngân
Xem chi tiết
Lovers
21 tháng 10 2016 lúc 17:47

Ta có :

\(A=3^{4\left(n+1\right)}-4^{3\left(n+1\right)}=81^{n+1}-64^{n+1}\)

\(=\left(81-64\right)\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)

\(=17\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)chia hết cho 17

Vậy ...

Nguyễn Ngọc Minh
Xem chi tiết
Nguyễn Châu Anh
24 tháng 11 2017 lúc 21:26

\(A=4^{n-1}\left(4+4^2+4^3\right)+4^{n+3}\left(4+4^2+4^3\right)+...+4^{n+17}\left(4+4^2+4^3\right)\)

\(\Rightarrow A=4^{n-1}\times84+4^{n+3}\times84+...+4^{n+17}\times84\)

\(\Rightarrow A=84\left(4^{n-1}+4^{n+3}+...+4^{n+17}\right)⋮84\)

Vậy \(A⋮84\) 

Nguyễn Anh Quân
24 tháng 11 2017 lúc 21:13

Yêu cầu bài này là gì vậy bạn ơi ?

Nguyễn Ngọc Minh
24 tháng 11 2017 lúc 21:18

Mk đăng r đó !

Sang Anh
Xem chi tiết
chu hải anh
Xem chi tiết
Hoàng Thị Hải Yến
Xem chi tiết
Rùa Con Chậm Chạp
Xem chi tiết
bin sky
Xem chi tiết
🍀 Bé Bin 🍀
22 tháng 7 2021 lúc 16:25

undefined

undefined

 

Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 21:32

a) Ta có: \(3^{n+2}-2^{n+4}+3^n+2^n\)

\(=3^n\cdot9+3^n-2^n\cdot16+2^n\)

\(=3^n\cdot10+2^n\cdot15⋮30\)

kudo shinichin
Xem chi tiết
Nguyễn Quỳnh Vân
Xem chi tiết
Vũ Minh Tuấn
5 tháng 1 2020 lúc 21:25

a)

Đặt tích 3 số tự nhiên liên tiếp là T = a. (a + 1). (a + 2)

- Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp

+ Nếu a chia hết cho 2 (a chẵn)

=> T chia hết cho 2.

+ Nếu a chia 2 dư 1 (a lẻ)

=> a + 1 chia hết cho 2

=> T chia hết cho 2.

- Chứng minh T chia hết cho 3: Có 3 trường hợp

+ Nếu a chia hết cho 3

=> T chia hết cho 3.

+ Nếu a chia 3 dư 1

=> a + 2 chia hết cho 3

=> T chia hết cho 3.

+ Nếu a chia 3 dư 2

=> a + 1 chia hết cho 3

=> T chia hết cho 3.

Mà 2 và 3 nguyên tố cùng nhau

=> T chia hết cho 2.3 = 6 (đpcm).

Vậy tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.

Chúc bạn học tốt!

Khách vãng lai đã xóa
Suri Anh
5 tháng 1 2020 lúc 21:10

a) Gọi n, n+1, n+2 là 3 số tự nhiên liên tiếp

Ta có A=n*(n+1)*(n+2)

- Chứng minh A chia hết cho 2:

+ Nếu n chẵn => n chia hết cho 2 => A chia hết cho 2

+ Nếu n lẻ => n+1 chia hết cho 2 => A chia hết cho 2

- Chứng minh A chia hết cho 3:

+ Nếu n chia hết cho 3 => A chia hết cho 3

+ Nếu n chia 3 dư 1=> n+2 chia hết cho 3 => A chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => A chia hết cho 3

Mà (2,3) =1

=> A chia hết cho 2*3 = 6 ( thỏa mãn )

Vậy tích 3 số tự nhiên liên tiếp chia hết cho 6

Chúc bạn học có hiệu quả!

Khách vãng lai đã xóa
Suri Anh
5 tháng 1 2020 lúc 21:15

b) xét hiệu : 5(2a+3b) - 3(9a+5b) = 10a+ 15b - 27a-15b

<=> 5(2a+3b) - 3(9a+5b) = -17a

vì -17 chia hết cho17 nên -17a chia hết cho 17

=> 5(2a+3b) - 3(9a+5b) chia hết cho 17 (1)

+) ta có: 2a + 3b chia hết cho 17

nên 5(2a+3b) chia hết cho 17 (2)

từ (1) và (2) => 3(9a+5b) chia hết cho 17

mà (3,17) = 1

=> 9a+5b chia hết cho 17

vậy nếu 2a+3b chia hết cho17 thì 9a+5b chia hết cho17

+) ngược lại ta có 9a+5b chia hết cho17

nên 3(9a+5b) chia hết cho17 (3)

từ (1) và (3) => 5(2a+3b) chia hết cho 17

mà (5,17)=1

=> 2a+3b chia hết cho 17

chứng tỏ nếu 2a+3b chia hết cho17 thì 9a+5b chia hết cho 17

Chúc bạn học có hiệu quả!

Khách vãng lai đã xóa