cho tam giác ABC thỏa mãn cos 2A + cos 2B + cos 2C=-1. chứng minh rằng tam giác đó vuông
Cho tam giác ABC nhọn .Tìm min của :
\(T=\sqrt{sin^2A+\dfrac{1}{cos^2B}}+\sqrt{sin^2B+\dfrac{1}{cos^2C}}+\sqrt{sin^2C+\dfrac{1}{cos^2A}}\)
Bài 1: Cho tam giác ABC nhọn và 3 đường cao AD, BE, CF. Chứng minh rằng
a/ \(S_{AFE}=S_{ABC}.\cos^2A\)
b/ \(\frac{S_{DEF}}{S_{ABC}}\)\(=1-\left(\cos^2A+\cos^2B+\cos^2C\right)\)
a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)
Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)
Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)
b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\); \(S_{CEF}=S_{ABC}.cos^2C\)
Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)
Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)
Chúc em học tốt :)))
Tam giác ABC nhọn, 3 đường cao AH,BI, CK. Chứng minh:
SHIK=(1−cos^2A−cos^2B−cos^2C)*SABC
Ta có \(S_{IHK}=S_{ABC}-S_{AIK}-S_{BKH}-S_{CIH}\)
\(\Rightarrow\frac{S_{IHK}}{S_{ABC}}=\frac{S_{ABC}-S_{AIK}-S_{BKH}-S_{CIH}}{S_{ABC}}\)
\(=1-\frac{S_{AIK}}{S_{ABC}}-\frac{S_{BKH}}{S_{ABC}}-\frac{S_{CIH}}{S_{ABC}}\)
Kẻ \(KK_1\perp AC\)
Ta có \(\frac{S_{AIK}}{S_{ABC}}=\frac{\frac{1}{2}KK_1\cdot AI}{\frac{1}{2}BI\cdot AC}=\frac{KK_1\cdot AI}{BI\cdot AC}\)
Do \(KK_1\)song song với \(BI\Rightarrow\frac{KK_1}{BI}=\frac{AK}{AB}\)
Nên : \(\frac{S_{AIK}}{S_{ABC}}=\frac{AI\cdot AK}{AC\cdot AB}\)
Trong tam giác vuông \(AKC,\)ta có :
\(\frac{AK}{AC}=\cos A\)
Trong tam giác vuông \(AIB,\)ta có
\(\frac{AI}{AB}=\cos A\)
rồi tiếp theo dễ rồi , bạn suy nghĩ tiếp nhá
Tiếp nè : \(\Rightarrow\frac{S_{AIK}}{S_{ABC}}=\cos^2A\)
Tương tự : \(\frac{S_{BKH}}{S_{ABC}}=\cos^2B;\frac{S_{CIH}}{S_{ABC}}=\cos^2C\)
Vậy \(\frac{S_{IHK}}{S_{ABC}}=1-\cos^2A-\cos^2B-\cos^2C\Rightarrow S_{IHK}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)\times S_{ABC}\Rightarrow DPCM\)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
cho tam giác ABC tìm giá trị lớn nhất của biểu thức:
(sin^2A+sin^2B+sin^2C)/(cos^2A+cos^2B+cos^2C)
Tam giác ABC nhọn, 3 đường cao AH,BI, CK. Chứng minh:
\(S_{HIK}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)S_{ABC}\)
\(\Leftrightarrow\frac{S_{HIK}}{S_{ABC}}=1-\cos^2A-\cos^2B-\cos^2C\)
-Ta có: tam giác AIB vuông tại I \(\Rightarrow\cos A=\frac{AI}{AB}\)
Tam giác ACK vuông tại K \(\Rightarrow\cos A=\frac{AK}{AC}\)
\(\Rightarrow\cos^2A=\frac{AI}{AB}.\frac{AK}{AC}=\frac{\frac{1}{2}AI.AK}{\frac{1}{2}AB.AC}=\frac{\frac{1}{2}AI.AK.\cos A}{\frac{1}{2}AB.AC.\cos A}=\frac{S_{AKI}}{S_{ABC}}\)
Tương tự: \(\cos^2B=\frac{S_{BHK}}{S_{ABC}};\text{ }\cos^2C=\frac{S_{CIH}}{S_{ABC}}\)
\(\Rightarrow1-\cos^2A-\cos^2B-\cos^2C=\frac{S_{ABC}-S_{AKI}-S_{BHK}-S_{CIH}}{S_{ABC}}=\frac{S_{HIK}}{S_{ABC}}\text{ (đpcm)}\)
1/Cho tam giác nhọn ABC, gọi AH, BI, CK là các đường cao. CMR
a/ Các tam giác AIK , HBK, HIC, đồng dạng với tam giác ABC
b/CMR:AI.BK.CH=AB.BC.CA.cosA.cosB.cosC
c/CMR: S(HIK) / S(ABC) = 1- cos^2A - cos^2B - cos^2C
Đăng sớm sớm tí chứ đăng trễ v ai giải kịp m :v
Cho tam giác nhọn ABC.CM:\(\cos^2A+\cos^2B+\cos^2C< 1\)
\(cos^2A+cos^2B+cos^2C=\frac{1+cos2A}{2}+\frac{1+cos2B}{2}+\frac{2cos^2C}{2}\)
\(=\frac{2+cos2A+cos2B+2cos^2C}{2}\)
\(=\frac{2+2cos\left(A+B\right).cos\left(A-B\right)+2cos^2C}{2}\)
\(=\frac{2-2cosC.cos\left(A-B\right)+2cos^2C}{2}\)
\(=\frac{2-2cosC.\left(cos\left(A-B\right)-cos\left(A+B\right)\right)}{2}\)
\(=\frac{2-4cosC.cosA.cosB}{2}=1-2cosA.cosB.cosC< 1\)
Cho tam giác nhọn ABC . chứng minh rằng:
a/ \(\sin^2A+\sin^2B+\sin^2C>2\)
b/\(\cos A+\cos B+\cos C\le\frac{3}{2}\)
c/\(\cot A+\cot B+\cot C\ge\sqrt{3}\)