Cho B= 1/2^2+1/3^2+1/4^2+...+1/30^2. Chứng minh rằng 29/62
Cho B= 1/2^2+1/3^2+1/4^2+...+1/30^2. Chứng minh rằng 29/62
Cho B= 1/2^2+1/3^2+1/4^2+...+1/30^2. Chứng minh rằng 29/62
\(B>\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{30.31}\)
\(B>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{30}-\dfrac{1}{31}\)
\(B>\dfrac{1}{2}-\dfrac{1}{31}=\dfrac{29}{62}\left(đpcm\right)\)
Cho B=1/1^2+1/3^2+1/4^2+.._+1/2021.2023. Chứng minh rằng 29/62
cho S = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 +... + 2 mũ 28 + 2 mũ 29 + 2 mũ 30 . Chứng minh rằng S chia hết cho 7
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
S=21+22+23+...+230
S=(21+22+23)+(24+25+26)+...+(228+229+230)
S=7.2+7.24+...+7.228
S=7.(2+24+...+228)
⇒S⋮7
Ta có: \(S=2^1+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{28}\right)⋮7\)
Cho B=1/3-2/32+3/33-4/34+.....+29/329-30/330
chứng minh B<3/16
Chứng minh rằng tổng A=1+2+22+23+24+...+229+230 bằng( 231 - 1)
Ta có : A = 1 + 2 + 22 + ..... + 230
=> 2A = 2 + 22 + ..... + 231
=> 2A - A = 231 - 1
=> A = 231 - 1 (đpcm)
\(A=1+2+2^2+.......+2^{29}+2^{30}\)
\(2A=2.\left(1+2+2^2+........+2^{29}+2^{30}\right)\)
\(2A=2+2^2+2^3+......+2^{30}+2^{31}\)
\(2A-A=\left(2+2^2+2^3+.....+2^{30}+2^{31}\right)-\left(1+2+2^2.....+2^{29}+2^{30}\right)\)
\(A=2^{31}-1\)
\(\Rightarrow A=1+2+2^2+......+2^{29}+2^{30}=2^{31}-1\)
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a) A = 1/12 +1/22+1/32+1/42+ ... +1/502. Chứng minh rằng A < 2 ?
b) B = 21+22+23+24+ ... +230. Chứng minh rằng B chia hết cho 21 ?
cho:
a) A= 2+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}+\frac{1}{65}+\frac{1}{66}+\frac{1}{67}\)
chứng minh rằng A>5
b) B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{89^2}+\frac{1}{90^2}\)
chứng minh rằng \(\frac{40}{91}\)<B<1