a+b-2/c=b+c+1/a=c+a+1/b=a+b+c/2
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
với a,b,c>0
a)1/ab+1/bc+1/ac >= 4/3(1/a+b + 1/b+c + 1/c+a)^2
b)1/(a^2+b^2) + 1/ab >= 6/(a+b)^2
c)(A+a+B+b)/(A+a+B+b+c+d) + (B+b+C+c)/(B+b+C+c+a+d) > (C+c+A+a)/(C+c+A+a+b+d)
1)Cho a,b,c >0
Chứng minh bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)
2) Cho a,b,c>0 1/a + 1/b + 1/c =1
Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2
1)Cho a,b,c >0
Chứng minh bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)
2) Cho a,b,c>0 1/a + 1/b + 1/c =1
Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2
Đọc tiếp...
chứng minh bất đẳng thức sau 1, (a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)>=a+b+c. 2, 1/(1/a+1/b)+1/(1/b+1/c)+1/(1/c+1/a)<=(a+B+c)/2
CMR : a,b,c >0
1,\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\dfrac{>}{ }\dfrac{a+b+c}{2}\)
2,\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{a+c}{a^2+c^2}\dfrac{< }{ }\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
1.
Áp dụng BĐT BSC:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Đẳng thức xảy ra khi \(a=b=c>0\)
2.
Áp dụng BĐT \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) và BĐT BSC:
\(\dfrac{a+b}{a^2+b^2}+\dfrac{b+c}{b^2+c^2}+\dfrac{c+a}{c^2+a^2}\)
\(\le\dfrac{a+b}{\dfrac{\left(a+b\right)^2}{2}}+\dfrac{b+c}{\dfrac{\left(b+c\right)^2}{2}}+\dfrac{c+a}{\dfrac{\left(c+a\right)^2}{2}}\)
\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
\(\le2.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Đẳng thức xảy ra khi \(a=b=c>0\)
Cách khác:
1.
Áp dụng BĐT Cauchy:
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{c+a}+\dfrac{c+a}{4}+\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)
Đẳng thức xảy ra khi \(a=b=c>0\)
a)Cho a+b+c=1 và 1/a+1/b+1/c =0.Tính a^2+b^2+c^2
b)Cho a+b+c=2014 và 1/a+b + 1/a+c + 1/b+c=1/2014.Tính S=a/b+c + b/a+c + c/a+b
\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)
Mà \(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)
\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)
\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)
\(=2014.\frac{1}{2014}-3=1-3=-2\)
Vậy.....................
Đọc câu sau : A B C A B C B C A A B C A A B C A B C A B C A C B A B A B A B A B A B A B ^ C A C A C A A C A C
Và so sánh : 1 + 1 x 2 với 1/1 + 1/1 x 2/2 và với 1/1/1 + 1/1/1 x 2/2/2 và cả 1/1/1/1 + 1/1/1/1 x 2/2/2/2
( Lưu ý : Dấu " / " là dấu chia ; Dấu " x " là dấu nhân )
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....
Rút gọn các biểu thức:
a, (3x+1)^2-2(3x+1)(3x+5)+(3x+5)^2
b,(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
c,(a+b-c)^2+(a-b+c)^2-2(b-c)^2
d,(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
e,(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2
Rút gọn các biểu thức sau:
a) 2x(2x-1)^2 - 3x(x+3)(x-3) - 4x(x+1)^2
b) (a-b+c)^2 - (b-c)^2 + 2ab-2ac
c) (3x+1)^2 - 2(3x+1)(3x+5) + (3x+5)^2
d) (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
e) (a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2
g) (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2
h) (a+b+c+d)^2 + (a+b-c-d)^2 + (a+c-b-d)^2 + (a+d-b-c)^2