Cho x+y=11, xy=8. Giá trị của biểu thức A=x^3+y^3-2x^2y-2xy^2= ?
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
tính giá trị các biểu thức sau: A=x^2+xy+y^2/2x^2y+2xy^2 với x+y=3/4 và xy=1/8
nhuTính giá trị của biểu thức N= X^3 +x^2y -2x^2 -xy^2 +2xy+2y+2x- 2 Biết x+y-2=0?
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
tính giá trị biểu thức sau biết x+t-2=6
M=x^3+x^2y-2x^2-xy-y^2+3y+x-1
N=x^3-2x^2-xy^2+2xy+2y+2x-2
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
Hiệu vân tốc giữa kim phút và kim giờ là:
1 - 1/12 = 11/12 (vòng đồng hồ/giờ)
Lúc 4 giờ kim giờ cách kim phút 1/3 vòng đồng hồ. Từ lúc đuổi kịp kim giờ, muốn hai kim thẳng hàng với nhau thì kim phút phải đi vượt kim giờ 1/2 vòng đồng hồ nữa. Như vậy, kể từ lúc 4 giờ tới lúc hai kim thẳng hàng với nhau thì kim phút phải đi nhiều hơn kim giờ là:
1/3+ 1/2 = 5/6 (vòng đồng hồ)
Sau ít nhất bao lâu hai kim thẳng hàng với nhau là:
5/6 : 11/12 = 10/11 (giờ)
khâm phục nguyễn việt hoàng quá! viết dài quá !!!!!!!
Tìm giá trị nhỏ nhất của các biểu thức :
a, \(A=2x^2+y^2-2xy-2x+3\)
b, \(B=x^2-2xy+2y^2+2x-10y+17\)
c, \(C=x^2-xy+y^2-2x-2y\)
hoc tot de lam lien doi nho chua.
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
\(B=x^2-2xy+2y^2+2x-10y+17\)
\(B=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)
\(B=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]-8y+y^2+16\)
\(B=\left(x-y+1\right)^2+\left(y^2-8y+16\right)\)
\(B=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Mà \(\left(x-y+1\right)^2\ge0\forall x;y\)
\(\left(y-4\right)^2\ge0\forall y\)
\(\Rightarrow B\ge0\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy Min B = 0 khi (x;y)=(3;4)
Tìm giá trị nhỏ nhất của các biểu thức:
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(B=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+200\)
\(C=x^2+xy+y^2-3x-3y\)
Cho biểu thức M=\(x^3\)+3x\(y^2\)- 2xy+\(x^3\)- xy - 2x\(y^2\)+1
a) thu gọn biểu thức M ; tính giá trị biểu thức khi x=-1 ; y=2
A = 3x^3 +6x^2 + 3xy^3
x= 1 phần 2 ; p = -1 phần 3
A=3.1 phần 2^3 . -1 phần 3 + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3
=-1 phần 8 + -1 phần 2 - 1 phần 2
= -1 phần 4