CMR :
a) ( n + 2 ) . ( n + 5 ) chia hết cho 2
b) ( n + 3 ) . ( n + 6 ) chia hết cho 2
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
1) Số cần tìm là: 3
2) 2354 X 9 = 21186
3) ( "b" ở đâu ra vậy bạn ? )
4) Đăt S = 3^(n+2) - 2^(n+2) + 3^n - 2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
=> S chia hết cho 10.
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền*
2*** nhân 9=2118*
3 Cho A=dcda CMR
a A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b A chia hết cho 8khi và chỉ khi (a+2b+4c) chia hết cho8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
Chứng minh
A = ( n+ 2) ( n+ 5) chia hết cho 2
B = (2n + 3) (n+6 ) (5n + 2) chia hết cho 3
a: TH1: n=2k
A=(n+2)(n+5)
=(2k+2)(2k+5)
=2(k+1)(2k+5)\(⋮\)2(1)
TH2: n=2k+1
\(A=\left(n+2\right)\left(n+5\right)\)
\(=\left(2k+1+2\right)\left(2k+1+5\right)\)
\(=\left(2k+3\right)\left(2k+6\right)\)
\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)
Từ (1),(2) suy ra \(A⋮2\)
b: TH1: n=3k
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)
\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)
TH2: n=3k+1
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)
\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)
=(6k+5)(3k+7)(15k+7)
=>B không chia hết cho 3
Vậy: B không chia hết cho 3 với mọi n
1 Tìm số nguyên tố để p+2,p+6,p+8 đồng thời là số nguyên tố
2,Điền* biết 2*** nhân 9=2118*
3 Cho A=dcda . CMR:
a ) A chia hết cho 4 khi và chỉ khi (a+2b) chia het cho 4
b) A chia hết cho 8 khi và chỉ khi (a+2b+4c) chia hết cho 8
4 CMR 3^n+2-2^n+2+3^n-2^n chia hết cho 10
CMR:
a)abc chia hết cho 21 (=) a - 2b + 4c chia hết cho 21
b)Ngoại n thuộc N thì 60n + 45 chia hết cho 15 nhưng ko chia hết cho 30
c)Ko có số tự nhiên nào chia cho 15 thì dư 6 và chia 9 dư 1
d)(1005n + 2100b) chia hết cho 15 (a,b thuộc N)
e)A= n2 + n + 1 ko chia hét cho 2 và 5.Ngoại n thuộc N
f)Ngoại n thuộc N tích (n + 3) . (n + 6) chia hết cho 2
g)H = 2 + 22 + 23 +.....+ 260 chia hết cho 3,7,15
h)E = 1 + 3 + 32 + 33 + .......+ 31991 chia hết cho 13 và 41
CMR:
a)8^7-2^18 chia hết cho 14
b)10^6-5^7 chia hết cho 59
c)313^5*299-313^6*35 chia hết cho 7
d)3^n+2-2^n+2+3^n-2^n chia hết cho 10
e)3^n+3+2^n+3+3^n+1+2^n+2 chia hết cho 6
f)7^6+7^5-7^4 chia hết cho 11
a, cmr n^2+n chia hết cho 2 với n thuộc N
b,cmr a^2b+ b^2a chia hết cho 2 với a.b thuộc N
c, cmr51^n+47^102 chia hết cho 10 n thuộc N
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)