a: TH1: n=2k
A=(n+2)(n+5)
=(2k+2)(2k+5)
=2(k+1)(2k+5)\(⋮\)2(1)
TH2: n=2k+1
\(A=\left(n+2\right)\left(n+5\right)\)
\(=\left(2k+1+2\right)\left(2k+1+5\right)\)
\(=\left(2k+3\right)\left(2k+6\right)\)
\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)
Từ (1),(2) suy ra \(A⋮2\)
b: TH1: n=3k
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)
\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)
TH2: n=3k+1
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)
\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)
=(6k+5)(3k+7)(15k+7)
=>B không chia hết cho 3
Vậy: B không chia hết cho 3 với mọi n