/x+1/ + /x+4/ = 3x
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
1.Giải phương trình:
a) 4x-8/2x^2+1 = 0
b)x^2-x-6/x-3 = 0
c)x+5/3x-6 - 1/2 = 2x-3/2x-4
d)12/1-9x^2 = 1-3x/1+3x - 1+3x/1-3x
2.Giải các phương trình:
a)5 + 96/x^2-16 = 2x-1/x+4 - 3x-1/4-x
b)3x+2/3x-2 - 6/2+3x = 9x^2/9x^2-4
c)x+1/x^2+x+1 - x-1/x^2-x+1 = 3/x(x^4+x^2+1)
Bài 1.
\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)
Bài 2.
\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)
ĐK: \(x\ne2\)
\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)
ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)
\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)
Bài 2.
\(a)5 + \dfrac{{96}}{{{x^2} - 16}} = \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{4 - x}}\)
ĐK: \(x\ne\pm4\)
\( Pt \Leftrightarrow \dfrac{{96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \dfrac{{2x - 1}}{{x + 4}} - \dfrac{{3x - 1}}{{x - 4}} = - 5\\ \Leftrightarrow \dfrac{{96 - \left( {2x - 1} \right)\left( {x - 4} \right) - \left( {3x - 1} \right)\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow \dfrac{{ - 5{x^2} - 2x + 96}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = - 5\\ \Leftrightarrow - 5{x^2} - 2x + 96 = - 5\left( {{x^2} - 16} \right)\\ \Leftrightarrow 96 - 2x = 80\\ \Leftrightarrow - 2x = - 16\\ \Leftrightarrow x = 8\left( {tm} \right)\\ b)\dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} = \dfrac{{9{x^2}}}{{9{x^2} - 4}} \)
ĐK: \(x \ne \dfrac{2}{3};x \ne -\dfrac{2}{3}\)
\( Pt \Leftrightarrow \dfrac{{3x + 2}}{{3x - 2}} - \dfrac{6}{{2 + 3x}} - \dfrac{{9{x^2}}}{{9{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{{{\left( {2 + 3x} \right)}^2} - 6\left( {3x - 2} \right) - 9{x^2}}}{{\left( {3x - 2} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{16 - 6x}}{{\left( {3 - 2x} \right)\left( {2 + 3x} \right)}} = 0\\ \Leftrightarrow 16 - 6x = 0\\ \Leftrightarrow - 6x = - 16\\ \Leftrightarrow x = \dfrac{8}{3}\left( {tm} \right)\\ c)\dfrac{{x + 1}}{{{x^2} + x + 1}} - \dfrac{{x - 1}}{{{x^2} - x + 1}} = \dfrac{3}{{x\left( {{x^4} + {x^2} + 1} \right)}} \)
Ta có: \(x(x^4+x^2+1)=x[(x^2+1)^2-x^2]=x(x^2+x+1)(x^2-x+1)\)
Do \(\left\{ \begin{array}{l} {x^2} + x + 1 = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\forall x\\ {x^2} - x + 1 = \left( {x - \dfrac{1}{2}} \right) + \dfrac{3}{4} > 0\forall x \end{array} \right.\) nên phương trình xác định với mọi $x \ne 0$
Quy đồng, rồi biến đổi phương trình về dạng \(2x=3 \Leftrightarrow x =\dfrac{3}{2} (tm)\)
B) (2x+3)2-(5x-4) (5x+4)=(x+5)2-(3x-1) (7x+2)-(x2-x+1)
C) (1-3x)2-(x-2) (9x+1)=(3x-4) (3x+4)-9(x+3)2
D) (3x+4) (3x-4) - (2x+5)2=(x-5)2+(2x+1)2-(x2-2x)+(x-1)2 cần gắp
Tìm x
b) (x-5) (x-4) - (x+1)(x-2)=7
c) (3x-4)(x-2)=3x(x-9)-3
d)(x-3)(x^2+3x+9)+x(5-x^2)=6x
e) (3x-5)(x+1)-(3x-1)(x+1)=x-4
b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Rightarrow x^2-9x+20-x^2+x+2=7\)
\(\Rightarrow-8x+22=7\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=-\frac{11}{17}\)
d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)
\(\Rightarrow6x=-27\)
\(\Rightarrow x=-\frac{27}{6}\)
\(\Rightarrow x=-\frac{9}{2}\)
e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Rightarrow-4=x-4\)
\(\Rightarrow x=0\)
b) (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8
c) (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17
d) (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27
e) (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0
giải các phương trình
a)5+(96/x^2-16)=(2x-1/x+4)-(3x-1/4-x)
b)(3x+2/3x-2)-(6/2+3x)=9x^2/9x^2-4
c)(x+1/x^2+x+1)-(x-1/x^2-x+1)=3/x(x^4+x^2+1)
a) ĐKXĐ: \(x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
<=> \(5+\frac{96}{\left(x-4\right)\left(x+4\right)}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
<=> 5(x - 4)(x + 4) + 96(x - 4) = (2x - 1)(x - 4)(4 - x) - (3x - 1)(x + 4)(4 - x)
<=> 20x2 - 16x + 64 = 18x2 + 8x
<=> 20x2 - 16x + 64 - 18x2 - 8x = 0
<=> 2x2 - 24x + 64 = 0
<=> 2(x2 - 12x + 32) = 0
<=> 2(x - 8)(x - 4) = 0
<=> (x - 8)(x - 4) = 0
<=> x - 8 = 0 hoặc x - 4 = 0
<=> x = 8 (tm) hoặc x - 4 = 0 (ktm)
=> x = 8
b) ĐKXĐ: \(x\ne\pm\frac{2}{3}\)
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
<=> \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-2^2}\)
<=> \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
<=> (2 + 3x)2 - 6(3x - 2) = 9x2
<=> 16 - 6x + 9x2 = 9x2
<=> 16 - 6x + 9x2 - 9x2 = 0
<=> 16 - 6x = 0
<=> -6x = 0 - 16
<=> -6x = -16
<=> x = -16/-6 = 8/3
=> x = 8/3
Tìm x, biết:
(4x-1)2-(3x+2)(3x-2)= (7x-1)(x+2)+(2x+1)2-(4x2+7)
(5x-1)(x+1)-2(x-3)2= (x+2)(3x-1)-(x+4)2+(x2-x)
(-x+5)(x-2)+(x-7)(x+7)= (3x+1)2-(3x-2)(3x+2)
(2x+3)2-(5x-4)(5x+4)= (x+5)2-(3x-1)(7x+2)-(x2-1)
(1-3x)2-(x-2)(9x+1)= (3x-4)(3x+4)-9(x+3)2
Tìm x :( bài 14 trang 11 sách bồi dưỡng năng lực tự học toán 8)
Câu 2 : (2x+3)2+(x-1)*(x+1)=5*(x+2)2-(x-5)*(x+1)+(x+4)2
Câu 3 : (-x+5)*(x-2)+(x-7)*(x+7)=(3x+1)2-(C)*(3x+2)
Câu 4 : (5x-1)*(x+1)-2(x-3)2=(x+2)*(3x-1)-(x+4)2+(x2-x)
Câu 5 : (4x-1)2-(3x+2)*(3x-2)=(7x-1)*(x+2)+(2x+1)2-(3x+2)
Câu 6 : (2x+3)2-(5x-4)*(5x+4)=(x+5)2-(3x-1)*(7x+2)-(x2-1+1)
Câu 7 : (1-3x)2-(x-2)*(9x+1)=(3x-4)*(3x+4)-9(x+3)2
Câu 8 : (3x+4)*(3x-4)-(2x+5)=(x-5)+(2x+1)2-(x2-2x)+(x-1)2
Câu 9 : (x-7)*(x+1)-(x-3)2=(3x-5)*(3x+5)-(3x+1)+(x-2)2-x2
Câu 10 : -5(x+3)2+(x-1)*(x+1)+(2x-3)=(5x-2)2-5x(5x+3)
Tìm x
b) (x-5) (x-4) - (x+1)(x-2)=7
c) (3x-4)(x-2)=3x(x-9)-3
d)(x-3)(x^2+3x+9)+x(5-x^2)=6x
e) (3x-5)(x+1)-(3x-1)(x+1)=x-4
b) \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Leftrightarrow\) \(x^2-4x-5x+20-x^2+2x-x+2\)\(=7\)
\(\Leftrightarrow\) \(-8x+22=7\)
\(\Leftrightarrow\) x= \(\frac{-15}{8}\)
c) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Leftrightarrow\)\(3x^2-6x-4x+8=3x^2-27x-3\)
\(\Leftrightarrow\) \(3x^2-3x^2-6x-4x+27x=-3-8\)
\(\Leftrightarrow\) \(17x=-11\)
\(\Leftrightarrow\) \(x=\frac{-11}{17}\)
d) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Leftrightarrow\) \(x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)
\(\Leftrightarrow\) \(x^3+3x^2+9x-3x^2-9x+5x-x^3-6x=27\)
\(\Leftrightarrow\) \(-x=27\)
\(\Leftrightarrow\) \(x=-27\)
Giải phương trình:
a) 5 + 96/x2-16 = 2x-1/x+4 - 3x-1/4-x
b) 3x+2/3x-2 - 6/2+3x = 9x2/9x2-44
c) 1/x-1 + 1/x+1 = 2/x+2
d) x+1/x-2 - 5/x+2 = 12/x2-4 + 1
b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
=>-6x+16=0
=>-6x=-16
hay x=8/3(nhận)
c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)
\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)
\(\Leftrightarrow2x^2+4x-2x^2+2=0\)
=>4x+2=0
hay x=-1/2(nhận)
Giải phương trình
1, \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
2, \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)3, \(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{2x^2+2}\)4, \(\dfrac{2}{x+1}+\dfrac{3x+1}{x+1}=\dfrac{1}{\left(x+1\right)\left(x-2\right)}\)5, \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
1) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3x^2-2x+1\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8-3x^2+2x-1=0\)
\(\Leftrightarrow-23x-7=0\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=-\dfrac{7}{23}\)(nhận)
Vậy: \(S=\left\{-\dfrac{7}{23}\right\}\)
2) ĐKXĐ: \(x\notin\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
Ta có: \(\dfrac{3x+2}{3x-2}-\dfrac{6}{2-3x}=\dfrac{9x^2}{9x^2-4}\)
\(\Leftrightarrow\dfrac{3x+2}{3x-2}+\dfrac{6}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{3x+8}{3x-2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(3x+8\right)\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
Suy ra: \(9x^2+6x+24x+16=9x^2\)
\(\Leftrightarrow30x+16=0\)
\(\Leftrightarrow30x=-16\)
hay \(x=-\dfrac{8}{15}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{15}\right\}\)