tìm số tự nhiên x biết : 1/1.3+1/3.5+1/5.7+....+1/(2x-1)(2x+1)=49/99
Tìm x biết :\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)
1/1.3+1/3.5+1/5.7+....+1/(2x-1)(2x+1)=49/99
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}=2.\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)
\(\Rightarrow1-\frac{1}{2x+1}=\frac{98}{99}\)
\(\Rightarrow\frac{2x}{2x+1}=\frac{98}{99}\)
=> 2x = 98
=> x = 98 : 2 = 49
tìm x nguyên biết
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)
\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)
\(A=\frac{x}{2x+1}\)
Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right)\left(2x-1\right)}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}+\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)
\(\Rightarrow99x=49\left(2x+1\right)\)
\(\Rightarrow99x=98x+49\)
\(\Rightarrow x=49\)
Vậy : \(x=49\)
\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) +......+ \(\dfrac{1}{(2x-1)(2x+1)}\) = \(\dfrac{49}{99}\)
HeLp me
\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{49}{99}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{98}{99}\)
\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\)
\(1-\dfrac{1}{2x+1}=\dfrac{98}{99}\)
\(\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)
\(\dfrac{2x}{2x+1}=\dfrac{98}{99}\)
=> 2x=98
=> x=49
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+......+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\Leftrightarrow198x=196x+98\\ \Leftrightarrow2x=98\Leftrightarrow x=49\)
Nguyễn Hoàng Minh cho hỏi 2x + 1 - 1 đâu ra v ạ??
Tìm x, biết:
1/1.3+1/2.3+...+1/5.7+1/(2x-1).(2x+1)=49/99
BT1: Tìm x\(\in\)N * :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\cdot\left(2x+3\right)}\)=\(\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)
\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)
\(\frac{2x+2}{2x+3}=\frac{98}{99}\)
=) \(2x+2=98\)và \(2x+3=99\)
TH1 : \(2x+2=98\)
\(2x=98-2\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
TH2 :
\(2x+3=99\)
\(2x=99-3\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
Vậy x = 48
1/1.3 + 1/3.5 + 1/5.7 +...+ 1/(2x-1).(2x+1) = 49/99
giúp mình bài này vs, đề bài tìm x nguyên nha, pls
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\)
\(\Leftrightarrow\) \(\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)\(\Leftrightarrow\dfrac{1}{2}\left(1-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=1-\dfrac{98}{99}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\)
\(\Leftrightarrow2x+1=99\)
\(\Rightarrow x=\dfrac{99-1}{2}\)
\(\Rightarrow x=49\)
Vậy \(x=49\)
1/1.3+1/3.5+1/5.7+...+1/(2.x-1)(2.x+1)=49/99
=>2/1*3+2/3*5+...+2/(2x-1)(2x+1)=98/99
=>1-1/3+1/3-1/5+...+1/(2x-1)-1/(2x+1)=98/99
=>1-1/(2x+1)=98/99
=>1/(2x+1)=1/99
=>2x+1=99
=>x=49