Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tử-Thần /
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 20:46

\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)

Nguyễn Trung Tiến
Xem chi tiết
soyeon_Tiểu bàng giải
15 tháng 11 2016 lúc 18:04

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)

\(\Rightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}=2.\frac{49}{99}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)

\(\Rightarrow1-\frac{1}{2x+1}=\frac{98}{99}\)

\(\Rightarrow\frac{2x}{2x+1}=\frac{98}{99}\)

=> 2x = 98

=> x = 98 : 2 = 49

Nguyễn Trung Tiến
15 tháng 11 2016 lúc 18:14

cảm ơn bạn rất là nhiều nhé

151556
2 tháng 1 lúc 22:27

ez

Ngân Hoàng Xuân
Xem chi tiết
Hồng Trinh
1 tháng 6 2016 lúc 0:18

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\) 

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)

\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)

\(A=\frac{x}{2x+1}\) 

Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)

Nguyễn Quang Định
18 tháng 11 2016 lúc 19:49

x=49

Trần Nguyễn Bảo Quyên
13 tháng 1 2017 lúc 9:48

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right)\left(2x-1\right)}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}+\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)

\(\Rightarrow99x=49\left(2x+1\right)\)

\(\Rightarrow99x=98x+49\)

\(\Rightarrow x=49\)

Vậy : \(x=49\)

Lâm Duy Thành
Xem chi tiết
boi đz
20 tháng 8 2023 lúc 20:47

\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{49}{99}\)

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\cdot\left(2x+1\right)}=\dfrac{98}{99}\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\)

\(1-\dfrac{1}{2x+1}=\dfrac{98}{99}\)

\(\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)

\(\dfrac{2x}{2x+1}=\dfrac{98}{99}\)

=> 2x=98

=> x=49

ỵyjfdfj
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 17:38

\(\Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\Leftrightarrow198x=196x+98\\ \Leftrightarrow2x=98\Leftrightarrow x=49\)

Nguyễn Lưu Thùy Trang
15 tháng 10 2022 lúc 20:05

Nguyễn Hoàng Minh cho hỏi 2x + 1 - 1 đâu ra v ạ??

Trịnh Quỳnh Trang
Xem chi tiết
Lê Nguyễn Ngân An
Xem chi tiết
☆MĭηɦღAηɦ❄
29 tháng 4 2018 lúc 19:17

\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)

\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)

\(\frac{2x+2}{2x+3}=\frac{98}{99}\)

=) \(2x+2=98\)và \(2x+3=99\)

TH1 : \(2x+2=98\)

\(2x=98-2\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

TH2 : 
\(2x+3=99\)

\(2x=99-3\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

Vậy x = 48

Lê Thanh Minh
29 tháng 4 2018 lúc 19:23

Đặt A=

☆MĭηɦღAηɦ❄
29 tháng 4 2018 lúc 19:24

Tk mk nha mk làm đúng đó ~!!

Nguyễn Ánh Dương
Xem chi tiết
T-râm huyền thoại
3 tháng 2 2019 lúc 15:12

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\)

\(\Leftrightarrow\) \(\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right)=\dfrac{49}{99}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)\(\Leftrightarrow\dfrac{1}{2}\left(1-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)

\(\Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\)

\(\Leftrightarrow\dfrac{1}{2x+1}=1-\dfrac{98}{99}\)

\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\)

\(\Leftrightarrow2x+1=99\)

\(\Rightarrow x=\dfrac{99-1}{2}\)

\(\Rightarrow x=49\)

Vậy \(x=49\)

lyly
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 13:13

=>2/1*3+2/3*5+...+2/(2x-1)(2x+1)=98/99

=>1-1/3+1/3-1/5+...+1/(2x-1)-1/(2x+1)=98/99

=>1-1/(2x+1)=98/99

=>1/(2x+1)=1/99

=>2x+1=99

=>x=49