Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị mỹ
Xem chi tiết
Luong Ngoc Quynh Nhu
6 tháng 6 2016 lúc 22:34

Để làm đc bài này bạn cần áp dụng phương pháp đồng dư,chắc chắn sẽ ra,

nguyễn thị mỹ
8 tháng 6 2016 lúc 12:02

full đi

Nguyễn Tuấn Minh
Xem chi tiết
Pham An Duong
3 tháng 10 2016 lúc 19:58

Bạn tham khảo ở đây nhé

Bài toán 120 - Học toán với OnlineMath

Lê Nguyên Hạo
9 tháng 8 2016 lúc 9:40

Ta có trong 5 số bất kỳ luôn tồn tại 3 số có tổng chia hết cho 3 .

Như vậy trong 9 số thì tồn tại 5 cặp , mỗi cặp 3 số có tổng chia hết cho 3

Mỗi cặp đồng dư 0,3,6 mod 5

Nếu 3 cặp cùng 1 lớp đồng dư ⇒ dpcm

Mà có 5 cặp ⇒ Có đầy đủ 3 lớp đồng dư ⇒ Tồn tại 5 số có tổng chia hết cho 5

ROMAN REGINS
9 tháng 8 2016 lúc 9:42

vi no la so nguyen

tth_new
Xem chi tiết
tth_new
20 tháng 5 2017 lúc 8:29

Bài này mình nghĩ có nhiều cách giải.

Cách 1:  Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
 Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

Cách 2: Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3. 
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3. 
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a1,a2);(a3,a4);a5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)

KAITO KID 2005
20 tháng 5 2017 lúc 8:38

mik thấy bn hơi bị rảnh đó!tự hỏi tự trả lời lun!

Bùi Bảo Anh
Xem chi tiết
_ɦყυ_
22 tháng 11 2017 lúc 23:22

Xét các trường hợp:

·        a, b, c cùng chẵn --> đương nhiên chọn bất kỳ cặp nào cũng có

                                               tổng và cả hiệu của chúng là số chia hết cho 2

·        a, b, c cùng lẻ --> đương nhiên chọn bất kỳ cặp nào cũng có

                                          tổng và cả  hiệu của chúng là số chia hết cho 2

        a, b, c có 1 cặp là số lẻ --> Hiệu và tổng của 2 số lẻ chia hết cho 2

·        a, b, c có 1 cặp là số chẵn --> Hiệu và tổng của 2 số chẵn chia hết cho 2

   Hai trường hợp đầu có 3 cặp số thỏa mãn đầu bài

        Hai trường hợp cuối có 1 cặp số thỏa mãn đầu bài

---> Vậy có ít nhât 1 cặp số mà tổng và hiệu của chúng chia hết cho 2 (ĐPCM)

Gekkouga
23 tháng 11 2017 lúc 11:09

Tớ đồng ý vs ý kiến của : lê Phúc Huy

có ít nhat1 cặp số mà tổng hiệu của chúng chia hết cho 2

tk tớ nha

Đỗ Đức Đạt
23 tháng 11 2017 lúc 12:41

Ta có:

a ; a + 1 ; a + 2 ; a + 3 ; a + 4

Giả sử a + a + 1 + a + 2 = 3a + 3 chia hết cho 3

Vậy trong 5 số tự nhiên bất kì thì tổng của 3 số luôn chia hết cho 3 ( đpcm )

Thanh Cuc Vu
Xem chi tiết
_Never Give Up_ĐXRBBNBMC...
13 tháng 10 2018 lúc 5:19

Bạn tham khảo ỏ đây nhé:https://olm.vn/hoi-dap/question/427110.html

dream XD
Xem chi tiết
Lâm Khải My
8 tháng 4 2021 lúc 21:06

dễ thấy =))

 

duc cuong
Xem chi tiết
Nguyễn Đăng Luyện
8 tháng 4 2021 lúc 21:00

3 số lẻ liên tiếp hoặc 3 số chẵn liên tiếp chia hết cho 3

Khách vãng lai đã xóa
Ai Tick Mình Sẽ May Mắn...
Xem chi tiết
CÔNG CHÚA THẤT LẠC
27 tháng 9 2016 lúc 21:34

Bài 1

Trong 3 số tự nhiên tùy ý chọn ( a, b, c ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 3 số đó) mà tổng và hiệu của chúng chia hết cho 2.

Giải : Áp dụng quy tắc chẵn –lẻ

Xét các trường hợp:

·        a, b, c cùng chẵn --> đương nhiên chọn bất kỳ cặp nào cũng có

                                               tổng và cả hiệu của chúng là số chia hết cho 2

·        a, b, c cùng lẻ --> đương nhiên chọn bất kỳ cặp nào cũng có

                                          tổng và cả  hiệu của chúng là số chia hết cho 2

·        a, b, c có 1 cặp là số lẻ --> Hiệu và tổng của 2 số lẻ chia hết cho 2

·        a, b, c có 1 cặp là số chẵn --> Hiệu và tổng của 2 số chẵn chia hết cho 2

         Hai trường hợp đầu có 3 cặp số thỏa mãn đầu bài

        Hai trường hợp cuối có 1 cặp số thỏa mãn đầu bài

---> Vậy có ít nhât 1 cặp số mà tổng và hiệu của chúng chia hết cho 2 (ĐPCM)

Bài 2

Trong 4 số tự nhiên tùy ý chọn ( a, b, c, d ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 4 số đó) mà tổng hoặc hiệu của chúng chia hết cho 5.

Giải :  Áp dụng qui tắc số dư

    Ta thấy phép chia cho 5 có thể được các số dư là  0, 1, 2, 3, 4,

Xét các trường hợp:

·        cả 4 số có số dư khác nhau (0,1,2,3);(0,2,3,4);(0,1 4,2); (0,4,2,3);(1,2,3,4)

     bao giờ cũng có ít nhất 1 cặp số có số dư là (1+4) hoặc (2+3)

                  --> Tổng 1 cặp số đó chia hết cho 5

    Với nhóm số có số dư (1,2,3,4) --> 2 cặp có tổng chia hết cho 5

·        cả 4 số có số dư trùng nhau --> 6 cặp từng đôi một có hiệu = 0

                                                                                        --> chia hết cho 5

·        2 cặp có số dư trùng nhau --> Hiệu của 2 cặp đó = 0 --> chia hết cho 5

·        1 cặp có số dư trùng nhau --> Hiệu của 1 cặp đó = 0 --> chia hết cho 5

Vậy ít nhất cũng chọn ra 1 cặp số mà tổng hoặc hiệu của chúng chia hết cho 5.

Bài 3

Chứng minh rằng trong 7 số tự nhiên bất kỳ tùy chọn, bao giờ cũng có 4 số mà tổng của chúng chia hết cho 4

Giải:

Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)

                A,  B,     C   Và   D, E, F    mỗi nhóm có 1 cặp chia hết cho 2

    

* Giả thử (A+B) =2 m  và  (D+E)=2n --> (A+B) + (C+D)= 2(m+n)

     

                     Còn 3 số   C     F    G  sẽ có 1 cặp chia hết cho 2

                                     ( C + F) = 2 p    Với m,n,p cúng là số tự nhiên

Trong 3 số m, n, p  luôn chọn được 2 số có tổng chia hết cho 2.

*Giả thử (m + n) =2 q  ( q là số TN) thì ta có

     (A+B) + (C+D)= 2(m+n) = 4q  ==> A+B+C+D chia hết cho 4 (ĐPCM)

Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4

Chú ý: 

- Với bài toán chứng minh ta phải xét tất cả các trường hợp có thể xảy ra như bài 1 và bài 2; Với bài 3, tài liệu này chỉ nêu 1 trường hợp, còn các trường hợp khác nêu “CM tương tự”

- Bài 1 và bài 2 chú ý kết luận có sự khác nhau bởi 2 chữ  "và" với chữ "hoặc" !

k mik nha

Tô Trần Hoàng Triệu
20 tháng 10 2016 lúc 20:15
khi chia một số bất kì cho 3 thì số dư có thể là : 0;1;2.Cóa 3 số dư. theo nguyên lý Direchlet thì trong 9 số tự nhiên bất kì thì sẽ có ít nhất 3 số đồng dư khi chia cho 3. tổng của 3 số này là một số có tổng chia hết cho 3. Vậy : trong 9 số tự nhiên bất kì ta luôn chọn được 3 số có tổng chia hết cho 3.
Dương Tiến	Khánh
Xem chi tiết
Đoàn Đức Hà
9 tháng 8 2021 lúc 9:23

Nếu trong \(52\)số đã cho có hai số có cùng số dư khi chia cho \(100\)ta chỉ cần chọn hai số đó, có hiệu chia hết cho \(100\).

Nếu trong \(52\)số đã cho không có hai số nào có cùng số dư khi chia cho \(100\).

Xét các bộ \(0,\left(1,99\right),\left(2,98\right),...,\left(a,100-a\right),...,\left(49,51\right)\)(các số dư của các số khi chia cho \(100\))

Có \(51\)bộ mà có \(52\)số nên theo nguyên lí Dirichlet có ít nhất hai số thuộc một bộ. 

Xét hai số thuộc bộ đó, dễ thấy tổng của chúng chia hết cho \(100\).

Ta có đpcm. 

Khách vãng lai đã xóa
Nguyễn Quang Dũng
28 tháng 8 2022 lúc 11:01

anh Đoàn Đức Hà ơi chỉ có 50 bộ thôi mà anh sao lại 51 bộ ạ

bindz
19 tháng 5 2024 lúc 16:24

 g