CMR : \(n^4-6n^3+27n^2-54n+32\)chia hết cho 2 với mọi \(n\in Z\)
CMR:(n4-6n3+27n2-54n+32)chia het cho 2
với mọi n thuoc Z
\(n^4-6n^3+27n^2-54n+32\) chia hết cho 2 với mọi n thuộc z
giúp mk vs chiều ik hk rùi huhu
Cách 1:
Ta có:
\(A=n^4-6n^3+27n^2-54n+32=(n^4-n^3)-5n^3+5n^2+22n^2-22n-32n+32\)
\(=n^3(n-1)-5n^2(n-1)+22n(n-1)-32(n-1)\)
\(=(n-1)(n^3-5n^2+22n-32)\)
\(=(n-1)(n^3-2n^2-3n^2+6n+16n-32)\)
\(=(n-1)[n^2(n-2)-3n(n-2)+16(n-2)]\)
\(=(n-1)(n-2)(n^2-3n+16)\)
Ta thấy $(n-1)(n-2)$ là tích 2 số nguyên liên tiếp nên \((n-1)(n-2)\vdots 2\)
\(\Rightarrow A=(n-1)(n-2)(n^2-3n+16)\vdots 2\)
Ta có đpcm.
Cách 2:
\(A=n^4-6n^3+27n^2-54n+32\)
\(=(n^4+27n^2)-(6n^3+54n-32)\)
\(=n^2(n^2+27)-2(3n^3+27n-16)\)
Ta thấy \(n^2+27-n^2=27\) lẻ nên $n^2, n^2+27$ khác tính chẵn lẻ
Do đó trong 2 số $n^2$ và $n^2+27$ có 1 số chẵn, 1 số lẻ
\(\Rightarrow n^2(n^2+27)\vdots 2\)
Mà \(2(3n^3+27n-16)\vdots 2\)
Suy ra \(A=n^2(n^2+27)-2(3n^3+27n-16)\vdots 2\)
Ta có đpcm.
\(n^4-6n^3+27n^2-54n+32\) chia hết cho 2 với mọi n thuocj z
giúp mk vs chiều đi hk rùi
\(A=n^4-6n^3+27n^2-54n+32\)
\(=\left(n^4-3n^3+16n^2\right)-\left(3n^3-9n^2+48n\right)+\left(2n^2-6n+32\right)\)
\(=n^2\left(n^2-3n+16\right)-3n\left(n^2-3n+16\right)+2\left(n^2-3n+16\right)\)
\(=\left(n^2-3n+2\right)\left(n^2-3n+16\right)\)
\(=\left(n-2\right)\left(n-1\right)\left(n^2-3n+16\right)\)
Nhận thấy: \(\left(n-2\right)\left(n-1\right)\)là tích 2 số nguyên liên tiếp \(\left(n\in Z\right)\)
=> \( \left(n-2\right)\left(n-1\right)\)\(⋮\)\(2\)
=> A chia hết cho 2
C/m rằng : \(\left(n^4-6n^3+27n-54n+32\right)⋮2\) vs mọi m thuộc Z
\(n^4-6n^3+27n^2-54n+32\)
\(=n^4-n^3-5n^3+5n^2+22n^2-22n+32n-32\)
\(=\left(n-1\right)\left(n^3-5n^2+22n+32\right)\)
\(=\left(n-1\right)\left(n^3-2n^2-3n^2+6n+16n+32\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n^2-3n+16\right)\) chia hếtcho 2
Chứng minh: Với mọi số nguyên n thì biểu thức sau: n^4-6n^3+27n^2-54n+32 luôn luôn chẵn
Ta có với n chẵn thì giá trị biểu thức trên luôn chẵn
Xét trường hợp n lẻ:
=> n4 lẻ, 6n3 chẵn, 27n2 lẻ, 54n chẵn, 32 chẵn
=> n4 + 6n3 + 272 + 54 + 32 là số chẵn
Vậy, giá trị biểu thức đã cho luôn chẵn với n thuộc Z
Cm: n^4 - 6n^3 + 27n^2 - 54n + 32 là số chẵn
Bài 1 : Cho x2 - x = 3 . Tính giá trị biểu thức M= x4 - 2x3 +3x2 -2x +2
Bài 2 : CM : biểu thức A= n4 - 6n3 +27n2 -54n + 32 là số chẵn
Bài 3: Tìm nghiệm nguyên của phương trình x2 = y ( y+1) ( y+2) ( y+3)
Bài 4 : Cho a là số nguyên tố lớn hơn 3 , CMR : ( a^2 -1 ) chia hết cho 24
Bài 1:
\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)
\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)
\(=3x^2-3x+6+2\)
\(=3x^2-3x+8\)
\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ
1,Cho 4 số a,b,c,d thỏa mãn a+b+c+d = 0.
CMR: a^3+b^3+c^3=3(b+d)(ac-bd)
2, CMR:
a, n^4+6n^3+11n^2+6n chia hết cho 24 với mọi n thuộc Z
b,( m+1)(m+3)(m+5)(m+7)+15 chia hết cho m+6 với mọi m thuộc Z
Các bác giúp em với thứ 7 em phải nộp rồi