Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Diệu Dương
Xem chi tiết
An Thy
18 tháng 7 2021 lúc 18:57

a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng 

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4.8\left(cm\right)\)

b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHI vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AI=AH^2\Rightarrow AF.AI=AE.AB\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AI}\)

Xét \(\Delta AEF\) và \(\Delta AIB:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AI}=\dfrac{AF}{AB}\\\angle BAIchung\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta AIB\left(c-g-c\right)\)

undefined

 

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 22:35

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Phát Huỳnh
Xem chi tiết
Trúc Giang
16 tháng 9 2021 lúc 8:40

Tam giác ABC vuông tại A. Áp dụng Pitago

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\left(cm\right)\)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

\(\Rightarrow AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

Tam giác ABH vuông tại H. Áp dụng Pitago

\(\Rightarrow AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2=15^2-9^2=144\left(cm\right)\)

=> AH = 12 (cm)

thanh phong lê
2 tháng 11 2021 lúc 20:46

Tam giác ABC vuông tại A. Áp dụng Pitago

BC2=AB2+AC2BC2=AB2+AC2

⇒AC2=BC2−AB2=252−152=400(cm)⇒AC2=BC2−AB2=252−152=400(cm)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

⇒AB2=BH.BC⇒AB2=BH.BC

Trần Phương Uyên
Xem chi tiết
Đỗ Thị Thu Huyền
Xem chi tiết
Nguyễn Trần Nhật Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 10:24

a: AC=8cm

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: AH=4,8cm

蝴蝶石蒜
Xem chi tiết
ひまわり(In my personal...
24 tháng 5 2021 lúc 19:19

Theo \(pi-ta-go\) ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\) \((cm)\)

Áp dụng hệ thức lượng vào tam giác \(ABC\) vuông và đường cao \(AH\) ta có :

\(AH.BC=AB.AC\)\(\Rightarrow\) \(AH=\dfrac{6.8}{10}=4,8(cm)\)

💢Sosuke💢
24 tháng 5 2021 lúc 19:22

undefined

Phạm Uyên
24 tháng 5 2021 lúc 19:22

- Áp dụng định lý Pytago

=> BC=10 (cm)

- Gọi HB=a (cm) ; HC=b (cm)

=> a+b=BC=10 (1)

- Xét \(\Delta\)HBA và \(\Delta\)ABC có: 

                  BHA=BAC=90\(^o\)

                   BAC chung

=> \(\Delta\)HBA ~ \(\Delta\)ABC (g.g)

=> \(\dfrac{BH}{AB}\)=\(\dfrac{AB}{BC}\) (cạnh t/ư)

=> BH.BC=AB2 (tỉ lệ thức)

thay số: a.10= 36 (2)

Từ (1)(2) => a=3,6 (cm); b=6,4 (cm)

- Áp dụng Pytago cho \(\Delta\)HBA

=> AH2=AB2HB2 =36-12,96=23,04 (cm)

=> AH=4,8 (cm)

P/s: Vì không nhớ lớp 8 học hệ thức lượng chưa nên đành phải lôi thôi thế này :<<<<

Hoàng Mai
Xem chi tiết
KODOSHINICHI
9 tháng 9 2017 lúc 20:35

Cho tam giác ABC vuông tại A,có đường cao AH cắt phân giác BD tại I,Chứng minh rằng: IA.BH = IH.BA,AB^2 = BH.BC,IH/IA = AD/DC,Tam giác đồng dạng,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Cho tam giác ABC vuông tại A,có đường cao AH cắt phân giác BD tại I,Chứng minh rằng: IA.BH = IH.BA,AB^2 = BH.BC,IH/IA = AD/DC,Tam giác đồng dạng,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Đáp số : .........

lupin
9 tháng 9 2017 lúc 20:46

Làm giống KoDo SHINICHI

Trần Võ Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 4 2021 lúc 16:22

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=4\cdot9=36\)

hay AB=6(cm)

Vậy: AB=6cm

Thanh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2022 lúc 9:30

BC=10cm

AH=4,8cm

BH=3,6cm

\(\widehat{C}=37^0\)