Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chu thị quỳnh hoa
Xem chi tiết
Đăng Duy CFK
20 tháng 4 2017 lúc 19:45

\(^{2^5}\)

Tiểu Thư Họ Vũ
20 tháng 4 2017 lúc 19:45

2x2x2x2x2=\(^{2^5}\)

Danh Ha Anh
20 tháng 4 2017 lúc 19:45

2\(^5\)

Nam Khánh 2k
Xem chi tiết
vũ hải nguyên
Xem chi tiết
Phương Anh Trần
Xem chi tiết
Đinh Đức Hùng
5 tháng 3 2017 lúc 15:08

x1 + x2 + x3 + x4 + ....... + x49 + x50 + x51 = 0

<=>( x1 + x2) + (x3 + x4) + ....... + (x49 + x50) + x51 = 0

<=> 1 + 1 + ..... + 1 + x51 = 0 ( có [(50 - 1) : 1 + 1] . 2 = 25 số 1 )

<=> 25 + x51 = 0

=> x51 = - 25

Edogawa Conan
5 tháng 3 2017 lúc 15:05

trong violympic ak ra đề thiếu cà ai làm đc

nhok buồn vui
5 tháng 3 2017 lúc 15:06

câu 1:0x bất cứ số nào cũng =0=>x=0

câu 2:sai

Doãn Tuệ Lâm
Xem chi tiết

a) Để rút gọn biểu thức (x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x, ta thực hiện các bước sau:

(x+2)(x^2+4x+4) = x(x^2+4x+4) + 2(x^2+4x+4)
= x^3 + 4x^2 + 4x + 2x^2 + 8x + 8
= x^3 + 6x^2 + 12x + 8

(x-2)(x^2-4x-4) = x(x^2-4x-4) - 2(x^2-4x-4)
= x^3 - 4x^2 - 4x - 2x^2 + 8x + 8
= x^3 - 6x^2 + 4x + 8

Thay vào biểu thức ban đầu, ta có:
(x+2)(x^2+4x+4)-(x-2)(x^2-4x-4)-12x^2-x
= (x^3 + 6x^2 + 12x + 8 - (x^3 - 6x^2 + 4x - 12x^2 - x
= x^3 + 6x^2 + 12x + 8 - x^3 + 6x^2 - 4x - 8 - 12x^2 - x
= 8x + 8 - 4x - 8
= 4x

Vậy biểu thức đã được rút gọn thành 4x.

b) Để rút gọn biểu thức (x-2)(x+2)(x+3)-(x+1)(x^2-x+1), ta thực hiện các bước sau:

(x-2)(x+2) = x^2 - 2^2 = x^2 - 4

Thay vào biểu thức ban đầu, ta có:
(x-2)(x+2)(x+3)-(x+1)(x^2-x+1)
= (x^2 - 4)(x+3) - (x+1)(x^2-x+1)
= x^3 + 3x^2 - 4x - 12 - (x^3 + x^2 - x + x^2 - x + 1)
= x^3 + 3x^2 - 4x - 12 - x^3 - x^2 + x - x^2 + x - 1
= x^3 - x^3 + 3x^2 - x^2 - x^2 + 3x - 4x + x - 12 - 1
= 2x^2 - x - 13

Vậy biểu thức đã được rút gọn thành 2x^2 - x - 13.

Nguyên Nguyễn Hồ Xuân
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 14:40

PT có 2 nghiệm \(\Leftrightarrow\Delta'=\left(k-2\right)^2-\left(-2k-5\right)\ge0\)

\(\Leftrightarrow k^2-4k+4+2k+10\ge0\\ \Leftrightarrow k^2-2k+14\ge0\\ \Leftrightarrow k\in R\)

Vậy PT luôn có 2 nghiệm

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\left(1\right)\\x_1x_2=-2k-5\left(2\right)\end{matrix}\right.\)

Lại có \(2x_1-x_2=7\left(3\right)\)

\(\left(1\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\\2x_1-x_2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2k+3\\x_2=2x_1-7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2k+3}{2}\\x_2=\dfrac{4k+6}{2}-7=\dfrac{4k-8}{2}=2k-4\end{matrix}\right.\)

Thay vào \(\left(2\right)\Leftrightarrow\dfrac{\left(2k+3\right)\left(2k-4\right)}{2}=-2k-5\)

\(\Leftrightarrow\left(2k+3\right)\left(k-2\right)=-2k-5\\ \Leftrightarrow2k^2-k-6+2k+5=0\\ \Leftrightarrow2k^2+k-1=0\\ \Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-1\end{matrix}\right.\)

Nam Khánh 2k
Xem chi tiết
Nam Khánh 2k
Xem chi tiết
Nam Khánh 2k
Xem chi tiết