Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ninh Đức Nam
Xem chi tiết
Huỳnh Quang Sang
1 tháng 6 2018 lúc 20:02

\(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+...+\frac{3}{2017\cdot2018}\)

Ta có : \(=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+\frac{3}{3}-\frac{3}{4}+...+\frac{3}{2017}-\frac{3}{2018}\)

             \(=\frac{3}{1}-\frac{3}{2018}=\frac{6051}{2018}\)

Vậy \(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+...+\frac{3}{2017\cdot2018}=\frac{6051}{2018}\)

nguyen duc thang
1 tháng 6 2018 lúc 19:55

3/1.2 + 3/2.3 + 3/3.4 + ... + 3/2017.2018

\(3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)

= 3 . ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2017 - 1/2018 )

= 3 . ( 1 - 1/2018 )

= 3 . 2017/2018

= 6051/2018

Lê Hoàng Minh
1 tháng 6 2018 lúc 19:55

                            giải

3/1.2+3/2.3+3/3.4+.....+3/2017.2018

=3/1+3/2018

=6055/2018 

k mình nhé

Quang Minh
Xem chi tiết
Sahara
4 tháng 5 2023 lúc 20:46

\(A=2017:\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2018}\right)\)
\(=2017:\dfrac{2017}{2018}\)
\(=2017\cdot\dfrac{2018}{2017}\)
\(=2018\)
#NgDat

Ng KimAnhh
4 tháng 5 2023 lúc 20:49

\(A=2017:\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+...+\dfrac{1}{2017}\cdot\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{2018}{2018}-\dfrac{1}{2018}\right)\)

\(A=2017:\dfrac{2017}{2018}\)

\(A=2018.\)

Hoàng Ngọc Bách
Xem chi tiết

A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 

A = 333300

SHINAGAWA AYUKI
Xem chi tiết
SHINAGAWA AYUKI
16 tháng 11 2018 lúc 22:20

Các bạn giúp mk với. Mk đang cần gấp 😦

lilysdang
Xem chi tiết
Trần Ái Linh
11 tháng 4 2021 lúc 16:37

`x/(1.2)+x/(2.3)+x/(3.4)+.....+x/(2017.2018)=1`

`-> x/1 - x/2 +x/2-x/3+x/3-x/4+........+x/2017-x/2018=1`

`-> x-x/2018=1`

`-> 2017/2018 .x=1`

`-> x=2018/2017`

Trinh nguyen nhut truong
Xem chi tiết
Nguyễn Đăng Nhân
21 tháng 2 2023 lúc 19:55

Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Ta có:

\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)

\(S=1-\dfrac{1}{2018}\)

\(S=\dfrac{2017}{2018}\)

Thái Nguyên Vũ
21 tháng 2 2023 lúc 19:54

=1/1.2+1/2.3+1/3.4+...1/2017.2018

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018

=1-1/2018

=2018/2018-1/2018

=2017/2018

S = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\)+ .......+ \(\dfrac{1}{2017.2018}\)

S = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+.......+ \(\dfrac{1}{2017}\) - \(\dfrac{1}{2018}\)

S = \(\dfrac{1}{1}\) - \(\dfrac{1}{2018}\)

S = \(\dfrac{2017}{2018}\)

 

Le Trinh
Xem chi tiết
I don
5 tháng 4 2018 lúc 13:29

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018.2019}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)

( gạch bỏ các phân số giống nhau)

\(S=1-\frac{1}{2019}\)

\(S=\frac{2018}{2019}\)

CHÚC BN HỌC TỐT!!!!

Mai Trinh
5 tháng 4 2018 lúc 13:16

S=1/1.2+1/2.3+1/3.4+............1/2017.2018+1/2018.2019

S=1/2.(1+1/3.2+1/3.2+.............1/2017.1009+1/1009.2019)

S=1/4.(2+2/3.2+2/3.2+..............2/2017.1009+2/1009.2019)

S=1/4.(1-1/2+1/2-1/3+1/3+..........+1/1009-1/1009+1/2019)

S=1/4.(1-1/2019)

S=1/4.2018/2019=1009/4038

congkhks10
5 tháng 4 2018 lúc 15:55

S=1-1/2+1/2-1/3+1/3-1/4+.........+1/2017-1/2018+1/2018-1/2019

S=1-1/2019

S=2019/2019-1/2019

S=2018/2019

Linh
Xem chi tiết
KAl(SO4)2·12H2O
Xem chi tiết
KAl(SO4)2·12H2O
14 tháng 1 2018 lúc 13:38

cho bài kham khảo nè :

A=1.2+2.3+3.4+4.5+...+2017.2018
=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3
3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018
3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)
=> 3A=2017.2018.2019 => \(A=\frac{2017.2018.2019}{3};B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)

Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018
=> 2017.2018.2019<2018.2018.2018
=> A<B

thank nha

Thắng  Hoàng
14 tháng 1 2018 lúc 13:39

A=1.2+2.3+3.4+...+2017.2018

3A=1.2.3+2.3.3+3.4.3+...+2017.2018.3

3A=1.2.3+2.3.(4−1)+3.4.(5−2)+...+2017.2018.(2019−2016)

3A=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2017.2018.2019−2016.2017.2018

⇒3A=2017.2018.2019

⇒A=2017.2018.20193

A=2017.2018.20193;B=201833=2018.2018.20183

A=2739315938;B=2739316611

⇒A<B

Sooya
14 tháng 1 2018 lúc 13:40

\(A=1.2+2.3+3.4+4.5+............+2017.2018\)

\(3A = 1.2.3 + 2.3.4 +..............+ 2017.1018.3\)

\(3A = 1.2.3 + 2.3.(4-1) + .............. + 2017.2018.(2019-2016)\)

\(3A = 1.2.3 + 2.3.4 - 1.2.3 + ............. + 2017.2018.2019 - 2016.2017.2018\)

\(3A = 2017.2018.2019\)

\(A = \frac{2017.2018.2019}{3}\)

\(B =\frac {2018^3}{3}\)

đến đây ko bt lm