cho tam giác ABC có BC=7cm, AC=4cm, AB=6cm và AD là đường phân giác của góc A, thì BD bằng
cho tam giác ABC với AD là đường phân giác của góc A Biết AB -= 4cm,AC=6cm,BC=5cm . Tính BD , CD
Xét tam giác ABC có AD là tia phân giác của góc A
theo t/c đường phân giác trong tam giác, ta có:
AB/BD=AC/DC.Áp dụng dãy tỉ số bằng nhau ta có:
AB/BD=AC/DChay4/BD=6/DC=4+6/BD+DC=4+6/BC=10/5.
Từ 4/BD=10/5 => BD=4*5/10=2(cm)
6/DC=10/5 => DC=6*5/10=3(cm)
cho tam giác ABC có AD là tia phân giác của góc A, AB=5cm, AC=7cm, BC=6cm tính độ dài đoạn BD
vi AD là tia phân giác góc A của tam giác ABC nên:
BD/AB = DC/AC
hay BD/5 = DC/7 = (BD + DC)/5+7 = 1/2
do đó DB = 5/2
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
cho tam giác abc ad là đường phân giác góc a, DB=3cm,AB=4cm,AC=7cm. Tính BC?
Áp dụng định lý phân giác:
\(\dfrac{DB}{AB}=\dfrac{DC}{AC}\Rightarrow\dfrac{3}{4}=\dfrac{DC}{7}\Rightarrow DC=\dfrac{21}{4}\left(cm\right)\)
\(\Rightarrow BC=DB+DC=\dfrac{33}{4}=8,25\left(cm\right)\)
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm .Kẻ đường phân giác BD của góc ABC (D thuộc AC ) a)Tính BC, AD, DC b)Trên BC lấy điểm E sao cho CE= 4cm. Chứng minh tam giác CED đồng dạng với tam giác CAB c)Chứng minh ED= AD
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
cho tam giác ABC có AB=4cm, BC = 6cm. Trên tia đối của tia AB lấy D sao cho AD=5 cm
a.Chứng minh tam giác ABC đồng dạng tam giác CBD
b. AC=7cm. Tính CD
c. Đường phân giác của góc ABC cắt CA, CD lần lượt tại E, F. Chứng minh CE.CF=EA.FD
a: Xét ΔABC và ΔCBD có
AB/CB=BC/BD
góc B chung
=>ΔABC đồg dạng với ΔCBD
b: ΔABC đồng dạng với ΔCBD
=>AC/CD=BC/BD=6/9=2/3
=>7/CD=2/3
=>CD=7:2/3=7*3/2=21/2(cm)
c: CF/FD=BC/BD
EA/CE=BA/BC
mà BC/BD=BA/BC
nên CF/FD=EA/CE
=>CF*CE=FD*EA
Bài 19: Cho tam giác ABC có chu vi 18cm, các đường phân giác BD và CE. Tính các cạnh của tam giác ABC, biết
A. AC = 4cm, BC = 8cm, AB = 6cm
B. AB = 4cm, BC = 6cm, AC = 8cm
C. AB = 4cm, BC = 8cm, AC = 6cm
D. AB = 8cm, BC = 4cm, AC = 6cm
TK
Vậy AB = 4cm, BC = 8cm, AC = 6cm
Đáp án cần chọn là: C
Cho tam giác ABC có AC = 4cm, AB = 6cm và BC = 8cm. Gọi AD là tia phân giác của B A C ^ . Tính BD?
A. 4,2 cm
B. 4,8cm
C. 5,2cm
D. 5,4cm
Câu 9. Cho tam giác ABC có BD là đường phân giác. Biết AC = 8 cm BC = 10 cm và AD = 3 cm .Độ đài đoạn AB bằng A. 3cm. B. 6cm. C. 5cm D. 15/4cm.