Phân tích đa thức thành nhân tử
\(mn\left(x^2+y^2\right)+xy\left(m^2+n^2\right)\)
phân tích đa thức thành nhân tử:
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+xz\right)^2\)
Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b
=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b
Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2
= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2
=(x^2+y^2+z^2 +xy+yz+zx)^2
Phân tích đa thức thành nhân tử
\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\)
\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\)
\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)
\(\Rightarrow a+2b=\left(x+y+z\right)^2\)
Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
phân tích đa thức thành nhân tử
\(y\left(x-y\right)^2+xy\left(x-y\right)\)
\(y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)
\(=\left(xy-y^2+xy\right)\left(x-y\right)\)
\(=\left(2xy-y^2\right)\left(x-y\right)\)
y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]
= (x-y) ( 2xy -y2)
Phân tích đa thức thành nhân tử:
a) \(\left(xy\right)^2-xy-2\)
b) \(x^4-8x^3-16x^2+2\left(x^2-4x+4\right)-43\)
Lời giải:
a.
$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$
$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$
b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?
Phân tích đa thức thành nhân tử
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)
\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)
phân tích đa thức thành nhân tử
a.\(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
b.\(x^2+y^2-x^2y^2+xy-x-y\)
Phân tích đa thức thành nhân tử
\(27x^3-\dfrac{1}{8}y^3\)
a. \(\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}x^2\right)\)
b. \(\dfrac{1}{8}\left(216x^3-y^3\right)=\dfrac{1}{8}\left(6x-y\right)\left(36x^2+6xy+y^2\right)\)
cách phân tích nào đúng a hay b giải thích vì sao
phân tích đa thức thành nhân tử :
a)\(x^2-\left(m+n\right)x+mn\)
Phân tích đa thức thành nhân tử (mn giải chi tiết 1 xíu cho mk nhé)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)