tìm GTLN,GTNN của biểu thức
\(B=\frac{3x+\sqrt{x}+10}{\sqrt{x}+1}\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
a) Tìm GTLN của biểu thức : \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức : \(\sqrt{x^2-4x+3}\).
Ta có
\(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{1}{\sqrt{x}}+1+\sqrt{x}\)
Áp dụng bất đẳng thức cô si cho 2 số không âm ta có
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\)
=>\(1+\frac{1}{\sqrt{x}}+\sqrt{x}\ge3\)
dấu bằng xảy ra <=>x=1
Bài 1: Tìm GTNN và GTLN của biểu thức B=\(\frac{\sqrt{x}}{x+1}\)
Bài 2: Tìm GTNN,GTLN của M=\(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\)
ĐKXĐ: \(x\ge0\)
a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)
\(B_{min}=0\) khi \(x=0\)
\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)
\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)
b/ Tương tự câu a \(M_{min}=0\)
\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)
\(M_{max}=1\) khi \(x=1\)
tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
tìm GTLN,GTNN của biểu thức
\(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
Không tồn tại giá trị nhỏ nhất.1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
1 Tìm GTNN của biểu thức
C=\(\frac{x+9}{10\sqrt{x}}\)
2 Tìm GTLN của biểu thức E= \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
3 Tìm x để \(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
4 Rút họn P
P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
3/ Điều kiện xác định bạn tự làm nhé
\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
\(\Leftrightarrow8x+67\sqrt{x}+1=0\)
Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm
\(\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\). Tìm GTLN và GTNN của biểu thức
tìm gtnn và gtln của biểu thức \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
ĐK: x\(\ge0\).
Đặt \(A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Đặt \(t=\sqrt{x}\)( t >=0)
Có: \(A=\frac{t}{t^2+t+1}\)
<=> \(At^2+\left(A-1\right)t+A=0\)(1)
TH1: A =0 => t =0
TH2: A khác 0.
(1) có nghiệm <=> \(\Delta\ge0\Leftrightarrow\left(A-1\right)^2-4A^2\ge0\Leftrightarrow-3A^2-2A+1\ge0\Leftrightarrow-1\le A\le\frac{1}{3}\)
Do đó: A min = -1 thay vào tìm x
A max = 1/3 thay vào tìm x .
Kết luận....