Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen quynh trang
Xem chi tiết
Hoàng Thị Thu Thảo
Xem chi tiết
soyeon_Tiểubàng giải
9 tháng 10 2016 lúc 21:12

\(P=\frac{3^{2010}-6^{2010}+9^{2010}-12^{2010}+15^{2010}-18^{2010}}{-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)

\(P=\frac{-3^{2010}.\left(-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}\right)}{-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)

\(P=-3^{2010}\)

nguyễn ngọc phương thảo
Xem chi tiết
Khuất Minh Ngọc
16 tháng 2 2021 lúc 19:36

??????????????????????????????????????????

Khách vãng lai đã xóa
Ánh Nguyễn Văn
Xem chi tiết
Cao Ngọc Mai Thảo
Xem chi tiết
Cao Ngọc Mai Thảo
28 tháng 12 2014 lúc 10:49

Ta có:
3^12 = 9^6 = 81^3: Có số tận cùng bằng 1.
5^13: Có số tận cùng bằng 5.
7^15 = (7^16)/7 = (49^8)/7 = ((49^2)^4)/7: Có số tận cùng bằng 3.
11^2010: Có số tận cùng bằng 1.
Vậy tổng 3^12+5^13+7^15+11^2010 có số tận cùng bằng 0.

Mình biết làm mà quên mất , bây giờ mới nhớ

 

nguyễn công huy
26 tháng 12 2016 lúc 11:54

chữ số tận cùng là 0

Hoàng Công Dương
Xem chi tiết
dang vu minh quan
Xem chi tiết
Con Gái Họ Trần
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Trần Thị Hương
27 tháng 9 2017 lúc 20:37

\(C=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{2^{2010}+4^{2010}+6^{2010}+...+20^{2010}}\)

\(=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{1^{1010}.2^{2010}+2^{2010}.2^{2010}+2^{2010}.3^{2010}+...+2^{2010}.10^{2010}}\)

\(=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{\left(1^{2010}+2^{2010}+3^{2010}+...+10^{2010}\right)+2^{2010}.2^{2010}.2^{2010}...2^{2010}}\)

\(=\dfrac{1}{2^{2010}+2^{2010}+2^{2010}+...+2^{2010}}\)

Ngô Tấn Đạt
27 tháng 9 2017 lúc 20:39

\(G=\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{2^{2010}+4^{2010}+....+20^{2010}}\\ =\dfrac{1^{2010}+2^{2010}+...+10^{2010}}{2^{2010}\left(1^{2010}+2^{2010}+...+10^{2010}\right)}\\ =\dfrac{1}{2^{2010}}\)

Trần Minh An
27 tháng 9 2017 lúc 20:40

Theo bài ra, ta có:

\(G=\dfrac{1^{2010}+2^{2010}+3^{2010}+....+10^{2010}}{2^{2010}+4^{2010}+6^{2010}+....+20^{2010}}\)

\(\Rightarrow G=\dfrac{1^{2010}+2^{2010}+3^{2010}+....+10^{2010}}{2^{2010}\left(1^{1010}+2^{2010}+3^{2010}+....+10^{2010}\right)}\)

\(\Rightarrow G=\dfrac{1}{2^{2010}}\)

Vậy \(G=\dfrac{1}{2^{2010}}\)