Tìm no nguyên của pt: xy/z + yz/x + xz/y = 3
tìm x,y,z nguyên dương biết xy/z+yz/x+xz/y=3
giải pt 3 ẩn \(\int^{x^2+xy+xz=2}_{\int^{y^2+yz+xy=3}_{z^2+xz+yz=4}}\)
Cộng 3 vế của hệ pt lại được: \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=9\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\) x+y+z=3 hay x+y+z=-3
ở pt đầu => x(x+y+z)=2=> x= \(\frac{2}{x+y+z}\)mà x+y+z có 2 TH => x = \(\frac{2}{3}\) hay x=\(\frac{-2}{3}\)
Tương tự với 2 pt còn lại, ta có 2 nghiệm :S= { \(\left(\frac{2}{3};1;\frac{4}{3}\right);\left(\frac{-2}{3};-1;\frac{-4}{3}\right)\)}
( Do vế phải của 3 pt đều dương và có \(x^2,y^2,z^2\) đều dương => xy , yz và xz cũng dương => x, y, z phải cùng dấu )
Tìm 3 số nguyên dương x,y,z để xy+yz+xz=2xyz
xy+yz+xz=2xyz
<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)
<=>1/z+1/x+1/y=2 (1)
Giả sử x<hoặc=y<hoặc=z
=>1/x>hoặc bằng 1/y>hoặc bằng 1/z
=>1/x+1/x+1/x>hoặc=2
=>3/x>=2
Mà x thuộc N*
=>x=<1
=>x=1
Thay vào (1),ta được:
1/z+1+1/y=2
=>1/y+1/z=1 (2)
=>1/y+1/y>=1
=>2/y>=1
=>y=<2
=>y=2 hoặc y=1
+ y=1
Thay vào (2)
1/1+1/z=1
=>1/z=0 (loại)
+ y=2
Thay vào (2)
1/2+1/z=1
=>z=2 (thỏa mãn)
Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng
Cho x,y,z>0 và \(xy\sqrt{xy}+yz\sqrt{yz}+xz\sqrt{xz}=3\). Tìm MinP = \(\Sigma\dfrac{x^5}{yz}\)
\(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\)
\(\Rightarrow3\ge3\sqrt[3]{\left(ab.bc.ca\right)^3}=3\left(abc\right)^2\Rightarrow a^2b^2c^2\le1\)
Ta có: \(\dfrac{a^{10}}{b^2c^2}+a^2b^2c^2\ge2a^6\)
Tương tự và cộng lại: \(P+3\left(abc\right)^2\ge2\left(a^6+b^6+c^6\right)\)
\(\Rightarrow P\ge2\left(a^6+b^6+c^6\right)-3a^2b^2c^2\ge2\left[\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\right]-3=3\)
Cho x,y,z>0 và \(xy\sqrt{xy}+yz\sqrt{yz}+xz\sqrt{xz}=1\)
Tìm MinP= \(\Sigma\dfrac{x^6}{x^3+y^3}\)
Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)
\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)
tìm nghiệm nguyên của phương trình
\(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=3\)
điều kiện : x,y,z khác 0
Ta có : \(3=\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=\frac{y^2z^2+x^2z^2+x^2y^2}{xyz}>0\)
Mà \(y^2z^2+x^2z^2+x^2y^2>0\Rightarrow xyz>0\)
\(\Rightarrow\frac{yz}{x},\frac{xz}{y},\frac{xy}{z}>0\)
Áp dụng BĐT Cô-si cho 3 số dương,ta có :
\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge3\sqrt[3]{xyz}\ge3\)
Dấu "=" xảy ra khi | x | = | y | = | z |
Do đó : \(3=3\sqrt[3]{xyz}\)
\(\Rightarrow\hept{\begin{cases}xyz=1\\\left|x\right|=\left|y\right|=\left|z\right|\end{cases}}\)
+) Trường hợp x,y,z > 0 ta được x = y = z = 1
+) trường hợp hai trong 3 số x,y,z là số âm, ta có ( x; y ; z ) = ( 1 ; -1 ; -1 ) và các hoán vị
vậy....
cho x,y,z là các số thực thỏa mãn x2+y2+z2=1. tìm GTLN của bt M=2(xy+yz+xz)+(xy-xz)2+(yz-xy)2+(xz-yz)2
Giải hệ PT::
xy+2(x+y)=0
yz+2(y+z)=-3
xz+2(x+z)-5=0
giai phuong trinh xy+xz=2(x+y+z); xy+yz=3(x+y+z); xz+yz=4(x+y+z)
TH1:x,y,z=0
TH2:x=2\(\frac{3}{10}\)
y=3\(\frac{5}{6}\)
z=11\(\frac{1}{2}\)
giải ra cơ kết quả mik cx có mà hình như KQ sai rồi
à đúng rồi mà cách giải là sao v chỉ mik vs