Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 15:30

a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)

=>(x-3)*(x-1)=0

=>x=3 hoặc x=1

b: \(x_1+x_2=m\)

\(x_1x_2=m-1\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)

\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)

\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)

\(=m^4-4m^3+2m^2-4m+2\)

Giang Thị Thanh Vân
Xem chi tiết
Phí Đức
27 tháng 3 2021 lúc 20:01

a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)

b/ Pt có 2 nghiệm phân biệt

\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)

\(\to m\in \mathbb R\)

c/ Theo Viét

\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)

Tổng bình phương các nghiệm là 10

\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)

\(\to 4m^2-4m+2=10\)

\(\leftrightarrow 4m^2-4m-8=0\)

\(\leftrightarrow m^2-m-2=0\)

\(\leftrightarrow m^2-2m+m-2=0\)

\(\leftrightarrow m(m-2)+(m-2)=0\)

\(\leftrightarrow (m+1)(m-2)=0\)

\(\leftrightarrow m+1=0\quad or\quad m-2=0\)

\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)

Vậy \(m\in\{-1;2\}\)

Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 14:41

a: x^2-mx+m-1=0

Khi m=5 thì (1) sẽ là x^2-5x+4=0

=>x=1 hoặc x=4

b:Δ=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2

Để phươg trình có 2 nghiệm phân biệt thì m-2<>0

=>m<>2

x2=2x1

x2+x1=m

=>3x1=m và x2=2x1

=>x1=m/3 và x2=2/3m

x1*x2=m-1

=>2/9m^2-m+1=0

=>2m^2-9m+9=0

=>2m^2-3m-6m+9=0

=>(2m-3)(m-3)=0

=>m=3 hoặc m=3/2

nguyễn van cường
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 4 2021 lúc 20:00

1. Với m = -1 

Phương trình đã cho trở thành x2 + 2x - 3 = 0

Dễ thấy phương trình có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = -3

Vậy ...

2. a) Để phương trình có hai nghiệm phân biệt thì Δ' > 0

=> 1 - ( 4m + 1 ) > 0

<=> 1 - 4m - 1 > 0 <=> m < 0

b) Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=4m+1\end{cases}}\)

Để phương trình có hai nghiệm trái dấu thì x1x2 < 0 <=> 4m + 1 < 0 <=> m < -1/4

c) x12 + x22 = 11 <=> ( x1 + x2 )2 - 2x1x2 = 11

<=> 4 - 2( 4m + 1 ) = 11

<=> -8m - 2 = 7

<=> m = -9/8

Khách vãng lai đã xóa
nguyễn van cường
28 tháng 4 2021 lúc 19:01

giải dùm vs ạ

Khách vãng lai đã xóa
Vy Yến
Xem chi tiết
Ngọc Ngọc
Xem chi tiết
Thao Nguyen
Xem chi tiết
Thao Nguyen
21 tháng 8 2016 lúc 20:52

Giải hộ e bài này vs ạ mọi ng

꧁❥Hikari-Chanツ꧂
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2021 lúc 18:36

a.

Khi \(m=2\) pt trở thành:

\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

b.

Để pt có nghiệm \(x=-1\)

\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)

\(\Leftrightarrow-m^2+m+m^2-1=0\)

\(\Leftrightarrow m-1=0\)

\(\Leftrightarrow m=1\)

c.

Pt tương đương:

\(\left(m^2-m\right)x=-\left(m^2-1\right)\)

\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)

Pt vô nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)

Pt có vô số nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)

Akai Haruma
5 tháng 7 2021 lúc 18:40

Lời giải:

a. Khi $m=2$ thì pt trở thành:

$2x+3=0\Leftrightarrow x=-\frac{3}{2}$

b. Để pt có nghiệm $x=-1$ thì:

$(m^2-m).(-1)+m^2-1=0$

$\Leftrightarrow m-1=0\Leftrightarrow m=1$

c. 

PT $\Leftrightarrow (m^2-m)x=1-m^2$

Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\) 

\(\Leftrightarrow m=0\)

PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)

Để PT có nghiệm thì: $m\neq 0$

 

Nguyen Thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2022 lúc 14:49

\(\text{Δ}=\left(2m-6\right)^2-4\left(m^2+3m+2\right)\)

\(=4m^2-24m+36-4m^2-12m-8=-36m+28\)

Để phương trình có hai nghiệm thì -36m+28>=0

=>-36m>=-28

hay m<=7/9

Theo đề, ta có:

\(\left(x_1+x_2\right)^2-2x_1x_2=100\)

\(\Leftrightarrow\left(\dfrac{2m-6}{m+1}\right)^2-2\cdot\dfrac{m+2}{m+1}=100\)

\(\Leftrightarrow\dfrac{\left(2m-6\right)^2-2\left(m^2+3m+2\right)}{\left(m+1\right)^2}=100\)

\(\Leftrightarrow4m^2-24m+36-2m^2-6m-4=100\left(m+1\right)^2\)

\(\Leftrightarrow50\left(m+1\right)^2=m^2-15m+16\)

\(\Leftrightarrow50m^2+100m+50-m^2+15m-16=0\)

\(\Leftrightarrow49m^2+115m+34=0\)

\(\text{Δ}=115^2-4\cdot49\cdot34=6561\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{-115-81}{2\cdot49}=-2\left(nhận\right)\\m_2=\dfrac{-115+81}{2\cdot49}=-\dfrac{17}{49}\left(nhận\right)\end{matrix}\right.\)